首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2012年   1篇
  2011年   1篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.

Background and Aims

The contemporary relegation of conifers mainly to cold or infertile sites has been ascribed to low competitive ability, as a result of the hydraulic inefficiency of tracheids and their seedlings'' initial dependence on small foliage areas. Here it is hypothesized that, in temperate rainforests, the larger leaves of angiosperms also reduce self-shading and thus enable display of larger effective foliage areas than the numerous small leaves of conifers.

Methods

This hypothesis was tested using 3-D modelling of plant architecture and structural equation modelling to compare self-shading and light interception potential of seedlings of six conifers and 12 angiosperm trees from temperate rainforests. The ratio of displayed leaf area to plant mass (LARd) was used to indicate plant light interception potential: LARd is the product of specific leaf area, leaf mass fraction, self-shading and leaf angle.

Results

Angiosperm seedlings self-shaded less than conifers, mainly because of differences in leaf number (more than leaf size), and on average their LARd was about twice that of conifers. Although specific leaf area was the most pervasive influence on LARd, differences in self-shading also significantly influenced LARd of large seedlings.

Conclusions

The ability to deploy foliage in relatively few, large leaves is advantageous in minimizing self-shading and enhancing seedling light interception potential per unit of plant biomass. This study adds significantly to evidence that vegetative traits may be at least as important as reproductive innovations in explaining the success of angiosperms in productive environments where vegetation is structured by light competition.  相似文献   
2.

Background and Aims

A long-running debate centres on whether shade tolerance of tree seedlings is mainly a function of traits maximizing net carbon gain in low light, or of traits minimizing carbon loss. To test these alternatives, leaf display, light-interception efficiency, and simulated net daily carbon gain of juvenile temperate evergreens of differing shade tolerance were measured, and how these variables are influenced by ontogeny was queried.

Methods

The biomass distribution of juveniles (17–740 mm tall) of seven temperate rainforest evergreens growing in low (approx. 4 %) light in the understorey of a second-growth stand was quantified. Daytime and night-time gas exchange rates of leaves were also determined, and crown architecture was recorded digitally. YPLANT was used to model light interception and carbon gain.

Results

An index of species shade tolerance correlated closely with photosynthetic capacities and respiration rates per unit mass of leaves, but only weakly with respiration per unit area. Accumulation of many leaf cohorts by shade-tolerant species meant that their ratios of foliage area to biomass (LAR) decreased more gradually with ontogeny than those of light-demanders, but also increased self-shading; this depressed the foliage silhouette-to-area ratio (STAR), which was used as an index of light-interception efficiency. As a result, displayed leaf area ratio (LARd = LAR × STAR) of large seedlings was not related to species shade tolerance. Self-shading also caused simulated net daily carbon assimilation rates of shade-tolerant species to decrease with ontogeny, leading to a negative correlation of shade tolerance with net daily carbon gain of large (500 mm tall) seedlings in the understorey.

Conclusions

The results suggest that efficiency of energy capture is not an important correlate of shade tolerance in temperate rainforest evergreens. Ontogenetic increases in self-shading largely nullify the potential carbon gain advantages expected to result from low respiration rates and long leaf lifespans in shade-tolerant evergreens. The main advantage of their long-lived leaves is probably in reducing the costs of crown maintenance.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号