首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1859篇
  免费   159篇
  国内免费   120篇
  2023年   33篇
  2022年   39篇
  2021年   61篇
  2020年   61篇
  2019年   99篇
  2018年   82篇
  2017年   44篇
  2016年   58篇
  2015年   55篇
  2014年   107篇
  2013年   137篇
  2012年   96篇
  2011年   111篇
  2010年   74篇
  2009年   102篇
  2008年   91篇
  2007年   95篇
  2006年   83篇
  2005年   81篇
  2004年   79篇
  2003年   72篇
  2002年   73篇
  2001年   30篇
  2000年   55篇
  1999年   39篇
  1998年   26篇
  1997年   20篇
  1996年   22篇
  1995年   20篇
  1994年   13篇
  1993年   8篇
  1992年   9篇
  1991年   5篇
  1990年   8篇
  1989年   9篇
  1988年   5篇
  1987年   5篇
  1985年   12篇
  1984年   10篇
  1983年   4篇
  1982年   11篇
  1981年   11篇
  1980年   8篇
  1979年   11篇
  1978年   10篇
  1977年   12篇
  1976年   8篇
  1975年   14篇
  1974年   4篇
  1973年   5篇
排序方式: 共有2138条查询结果,搜索用时 15 毫秒
1.
In an effort to identify a potential back-up to apixaban (Eliquis®), we explored a series of diversified P4 moieties. Several analogs with substituted gem-dimethyl moieties replacing the terminal lactam of apixaban were identified which demonstrated potent FXa binding affinity (FXa Ki), good human plasma anticoagulant activity (PT EC2x), cell permeability, and oral bioavailability.  相似文献   
2.
3.
Although expression quantitative trait locus, eQTL, serves as an explicit indicator of gene–gene associations, challenges remain to disentangle the mechanisms by which genetic variations alter gene expression. Here we combined eQTL and molecular analyses to identify an association between two seemingly non-associated genes in brain expression data from BXD inbred mice, namely Ptpn21 and Nrg3. Using biotinylated receptor tracking and immunoprecipitation analyses, we determined that PTPN21 de-phosphorylates the upstream receptor tyrosine kinase ErbB4 leading to the up-regulation of its downstream signaling. Conversely, kinase-dead ErbB4 (K751R) or phosphatase-dead PTPN21 (C1108S) mutants impede PTPN21-dependent signaling. Furthermore, PTPN21 also induced Elk-1 activation in embryonic cortical neurons and a novel Elk-1 binding motif was identified in a region located 1919 bp upstream of the NRG3 initiation codon. This enables PTPN21 to promote NRG3 expression through Elk-1, which provides a biochemical mechanism for the PTPN21–NRG3 association identified by eQTL. Biologically, PTPN21 positively influences cortical neuronal survival and, similar to Elk-1, it also enhances neuritic length. Our combined approaches show for the first time, a link between NRG3 and PTPN21 within a signaling cascade. This may explain why these two seemingly unrelated genes have previously been identified as risk genes for schizophrenia.  相似文献   
4.
Second messengers are small rapidly diffusing molecules or ions that relay signals between receptors and effector proteins to produce a physiological effect. Lipid messengers constitute one of the four major classes of second messengers. The hydrolysis of two main classes of lipids, glycerophospholipids and sphingolipids, generate parallel profiles of lipid second messengers: phosphatidic acid (PA), diacylglycerol (DAG), and lysophosphatidic acid versus ceramide, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate, respectively. In this review, we examine the mechanisms by which these lipid second messengers modulate aldosterone production at multiple levels. Aldosterone is a mineralocorticoid hormone responsible for maintaining fluid volume, electrolyte balance, and blood pressure homeostasis. Primary aldosteronism is a frequent endocrine cause of secondary hypertension. A thorough understanding of the signaling events regulating aldosterone biosynthesis may lead to the identification of novel therapeutic targets. The cumulative evidence in this literature emphasizes the critical roles of PA, DAG, and sphingolipid metabolites in aldosterone synthesis and secretion. However, it also highlights the gaps in our knowledge, such as the preference for phospholipase D-generated PA or DAG, as well as the need for further investigation to elucidate the precise mechanisms by which these lipid second messengers regulate optimal aldosterone production.  相似文献   
5.
Steroid metabolites in urine from neonates with 21-hydroxylase deficiency are predominantly polyhydroxylated 17-hydroxyprogesterone and androgen metabolites, and most have incompletely defined structure. This study forms part of a comprehensive project to characterize and identify these in order to enhance diagnosis and to further elucidate neonatal types of steroid metabolism.Steroids were analyzed, after extraction and enzymatic conjugate hydrolysis, as methyloxime-trimethylsilyl ether derivatives on gas-chromatographs coupled to quadrupole and ion-trap mass-spectrometers. GC-MS and GC-MS/MS spectra, obtained with constant excitation conditions, were used together to determine the structure of the D-ring and the side chain of 20-oxo and 20-hydroxy pregnane(ene)s without oxo groups on the A-, B-, and C-ring.All possible combinations of D-ring and side chain configuration were considered. Most fragmentations could be interpreted as partial or complete D-ring cleavages with loss of the side chain, aided by comparison with spectra of deuterated derivatives and of borohydride reduced metabolites. Possible rearrangement ions are also discussed. More than 140 endogenous metabolites were characterized.GC-MS/MS was especially beneficial for characterization of compounds with 16,17-dihydroxy-20-oxo structure, interpreted as markers of intra-uterine enzyme induction. It also assisted the differentiation of 16-hydroxy-20-oxo metabolites, present in urine of non-affected neonates, from the diagnostic 17-hydroxy-20-oxosteroids and enabled the detection of 15,17-dihydroxy-20-oxo compounds in low concentrations. The presence of 17,21-dihydroxylated pregnane(ene)s despite the deficit in CYP21A2 is discussed.We conclude that GC-MS combined with GC-MS/MS allows reliable identification of the structure of the D-ring and side chain of pregnane(ene)s without prior isolation, even when in low concentrations in urine.  相似文献   
6.
The blood coagulation cascade represents an attractive target for antithrombotic drug development, and recent studies have attempted to identify oral anticoagulants with inhibitory activity for enzymes in this cascade, with particular attention focused on thrombin and factor Xa (fXa) as typical targets. We previously described the discovery of the orally active fXa inhibitor darexaban (1) and reported a unique profile that compound 1 rapidly transformed into glucuronide YM-222714 (2) after oral administration. Here, we propose a novel strategy towards the discovery of an orally active anticoagulant that is based on the bioconversion of a non-amidine inhibitor into the corresponding conjugate to boost ex vivo anticoagulant activity via an increase in hydrophilicity. Computational molecular modeling was utilized to select a template scaffold and design a substitution point to install a potential functional group for conjugation. This strategy led to the identification of the phenol-derived fXa inhibitor ASP8102 (14), which demonstrated highly potent anticoagulant activity after biotransformation into the corresponding glucuronide (16) via oral dosing.  相似文献   
7.
Exosomes derived from differentiated P12 cells and MSCs were proved to suppress apoptosis of neuron cells, and phosphatase and tensin homolog pseudogene 1 (PTENP1) was reported to inhibit cell proliferation. In this study, we aimed to investigate the role of PTENP1 in the process of post-spinal cord injury (SCI) recovery, so as to evaluate the therapeutic effects of exosomes derived from MSCs transfected with PTENP1 short hairpin RNA (shRNA), as a type of novel biomarkers in the treatment of SCI. Electron microscopy was used to observe the morphology of different exosomes. Real-time polymerase chain reaction and western blot, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, flow cytometry, Nissl staining, immunohistochemistry assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay were conducted to investigate and validate the underlying molecular signaling pathway. PTENP1-shRNA downregulated PTENP1 and PTEN while upregulating miR-21 and miR-19b. PTENP1-shRNA also accelerated cell apoptosis and reduced cell viability. In addition, PTENP1 reduced the miR-21 and miR-19b expression by directly targeting miR-21 and miR-19b. Meanwhile, both miR-21 and miR-19b reduced the expression of PTEN by directly targeting the 3′-untranslated region of PTEN. Furthermore, PTEN level and apoptosis index of neuron cells was the highest in the SCI group, while the treatment with exosomes+PTENP1-shRNA reduced the PTEN expression to a level similar to that in the sham group. Finally, PTENP1 inhibited miR-21 and miR-19b expression but upregulated PTEN expression. The upregulation of miR-21/miR-19b also suppressed the apoptosis of neuron cells by downregulating the PTEN expression. PTENP1 is involved in the recovery of SCI by regulating the expression of miR-19b and miR-21, and exosomes from PTENP1-shRNA-transfected cells may be used as a novel biomarker in SCI treatment.  相似文献   
8.
rap-1A, an anti-oncogene-encoded protein, is aras-p21-like protein whose sequence is over 80% homologous to p21 and which interacts with the same intracellular target proteins and is activated by the same mechanisms as p21, e.g., by binding GTP in place of GDP. Both interact with effector proteins in the same region, involving residues 32–47. However, activated rap-1A blocks the mitogenic signal transducing effects of p21. Optimal sequence alignment of p21 and rap-1A shows two insertions of rap-1A atras positions 120 and 138. We have constructed the three-dimensional structure of rap-1A bound to GTP by using the energy-minimized three-dimensional structure ofras-p21 as the basis for the modeling using a stepwise procedure in which identical and homologous amino acid residues in rap-1A are assumed to adopt the same conformation as the corresponding residues in p21. Side-chain conformations for homologous and nonhomologous residues are generated in conformations that are as close as possible to those of the corresponding side chains in p21. The entire structure has been subjected to a nested series of energy minimizations. The final predicted structure has an overall backbone deviation of 0.7 å from that ofras-p21. The effector binding domains from residues 32–47 are identical in both proteins (except for different side chains of different residues at position 45). A major difference occurs in the insertion region at residue 120. This region is in the middle of another effector loop of the p21 protein involving residues 115–126. Differences in sequence and structure in this region may contribute to the differences in cellular functions of these two proteins.  相似文献   
9.
Xylarianaphthol-1, a novel dinaphthofuran derivative, was isolated from a marine sponge-derived fungus of order Xylariales on the guidance of a bioassay using the transfected human osteosarcoma MG63 cells (MG63luc+). The chemical structure of xylarianaphthol-1 was determined from the 1H and 13C NMR analysis and was further confirmed by the total synthesis. Xylarianaphthol-1 activated p21 promoter stably transfected in MG63 cells dose-dependently. Expression of p21 protein in the wild-type MG63 cells was also increased by xylarianaphthol-1 treatment.  相似文献   
10.
MicroRNAs (miRNAs) are a class of gene regulators originating from non-coding endogenous RNAs. Altered expression, both up- and down-regulation, of miRNAs plays important roles in many human diseases. Correcting miRNA dysregulation by either inhibiting or restoring miRNA function may provide therapeutic benefit. However, efficient, nontoxic miRNA delivery systems are in need. Cell penetrating peptides (CPPs) have been widely exploited for protein, DNA, and RNA delivery. Few have examined CPP transfection efficiency with single stranded anti-miRNA. The R8 peptide condensed both siRNA and anti-miRNA. Greater than 50% of cells had anti-miRNA/R8 complexes associated and in these cells 68% of anti-miRNA escapes the endosome/lysosome. Single-stranded antisense miR-21 inhibitor (anti-miR-21) administered using the R8 peptide elicited efficient downstream gene upregulation. Glioblastoma cell migration was inhibited by 25% compared to the negative control group. To our knowledge, this is the first demonstration of miRNA modulation with anti-miR-21/R8 complexes, which has laid the groundwork for further exploring octaarginine as intracellular anti-miRNAs carrier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号