首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   1篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   6篇
  2016年   3篇
  2015年   6篇
  2014年   4篇
  2013年   10篇
  2012年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1975年   1篇
排序方式: 共有79条查询结果,搜索用时 31 毫秒
1.
Here, we seek to determine how compliantly suspended loads could affect the dynamic stability of legged locomotion. We theoretically model the dynamic stability of a human carrying a load using a coupled spring-mass-damper model and an actuated spring-loaded inverted pendulum model, as these models have demonstrated the ability to correctly predict other aspects of locomotion with a load in prior work, such as body forces and energetic cost. We report that minimizing the load suspension natural frequency and damping ratio significantly reduces the stability of the load mass but may slightly improve the body stability of locomotion when compared to a rigidly attached load. These results imply that a highly-compliant load suspension could help stabilize body motion during human, animal, or robot load carriage, but at the cost of a more awkward (less stable) load.  相似文献   
2.
The neuronal mechanisms underlying whole body vibration (WBV)-induced muscular reflex (WBV-IMR) are not well understood. To define a possible pathway for WBV-IMR, this study investigated the effects of WBV amplitude on WBV-IMR latency by surface electromyography analysis of the soleus muscle in human adult volunteers. The tendon (T) reflex was also induced to evaluate the level of presynaptic Ia inhibition during WBV. WBV-IMR latency was shorter when induced by low- as compared to medium- or high-amplitude WBV (33.9 ± 5.3 ms vs. 43.8 ± 3.6 and 44.1 ± 4.2 ms, respectively). There was no difference in latencies between T-reflex elicited before WBV (33.8 ± 2.4 ms) and WBV-IMR induced by low-amplitude WBV. Presynaptic Ia inhibition was absent during low-amplitude WBV but was present during medium- and high-amplitude WBV. Consequently, WBV induces short- or long-latency reflexes depending on the vibration amplitude. During low-amplitude WBV, muscle spindle activation may induce the short- but not the long-latency WBV-IMR. Furthermore, unlike the higher amplitude WBV, low-amplitude WBV does not induce presynaptic inhibition at the Ia synaptic terminals.  相似文献   
3.
The skeleton responds to mechanical stimulation. We wished to ascertain the magnitude and speed of the growing skeleton’s response to a standardised form of mechanical stimulation, vibration. 36 prepubertal boys stood for 10 minutes in total on one of two vibrating platforms (high (>2 g) or low (<1 g) magnitude vibration) on either 1, 3 or 5 successive days (n=12 for each duration); 15 control subjects stood on an inactive platform. Blood samples were taken at intervals before and after vibration to measure bone formation (P1NP, osteocalcin) and resorption (CTx) markers as well as osteoprotegerin and sclerostin. There were no significant differences between platform and control groups in bone turnover markers immediately after vibration on days 1, 3 and 5. Combining platform groups, at day 8 P1NP increased by 25.1% (CI 12.3 to 38.0; paired t-test p=0.005) and bone resorption increased by 10.9% (CI 3.6 to 18.2; paired t-test p=0.009) compared to baseline. Osteocalcin, osteoprotogerin and sclerostin did not change significantly. The growing skeleton can respond quickly to vibration of either high or low magnitude. Further work is needed to determine the utility of such “stimulation-testing” in clinical practice.  相似文献   
4.

Objective:

We performed a meta-analysis to evaluate the effects of whole-body vibration on physiologic and functional measurements in children with cerebral palsy.

Design and methods:

We searched MEDLINE, Cochrane Controlled Trials Register, EMBASE, Scielo, CINAHL (from the earliest date available to November 2014) for randomized controlled trials, that aimed to investigate the effects of whole-body vibration versus exercise and/or versus control on physiologic and functional measurements in children with cerebral palsy. Two reviewers independently selected the studies. Weighted mean differences (WMDs) and 95% confidence intervals (CIs) were calculated.

Results:

Six studies with 176 patients comparing whole-body vibration to exercise and/or control were included. Whole-body vibration resulted in improvement in: gait speed WMDs (0.13 95% CI:0.05 to 0.20); gross motor function dimension E WMDs (2.97 95% CI:0.07 to 5.86) and femur bone density (1.32 95% CI:0.28 to 2.36). The meta-analysis also showed a nonsignificant difference in muscle strength and gross motor function dimension D for participants in the whole-body vibration compared with control group. No serious adverse events were reported.

Conclusions:

Whole-body vibration may improve gait speed and standing function in children with cerebral palsy and could be considered for inclusion in rehabilitation programs.  相似文献   
5.
The present study introduces a new preparation of a spider vibration receptor that allows intracellular recording of responses to natural mechanical or electrical stimulation of the associated mechanoreceptor cells. The spider vibration receptor is a lyriform slit sense organ made up of 21 cuticular slits located on the distal end of the metatarsus of each walking leg. The organ is stimulated when the tarsus receives substrate vibrations, which it transmits to the organ’s cuticular structures, reducing the displacement to about one tenth due to geometrical reasons. Current clamp recording was used to record action potentials generated by electrical or mechanical stimuli. Square pulse stimulation identified two groups of sensory cells, the first being single-spike cells which generated only one or two action potentials and the second being multi-spike cells which produced bursts of action potentials. When the more natural mechanical sinusoidal stimulation was applied, differences in adaptation rate between the two cell types remained. In agreement with prior extracellular recordings, both cell types showed a decrease in the threshold tarsus deflection with increasing stimulus frequency. Off-responses to mechanical stimuli have also been seen in the metatarsal organ for the first time.  相似文献   
6.
Comparison between the middle ear anatomy of the Cape golden mole (Chrysochloris asiatica), which exhibits a club-shaped malleus head, and the Desert golden mole (Eremitalpa granti), with a ball-shaped malleus head, suggests differences in sensitivity to airborne sound. Scanning laser Doppler vibrometric measurements of the ossicular behavior in response to both vibration and airborne sound were made in C. asiatica. Two distinct vibrational modes were observed. In response to low-frequency vibration (70–200 Hz), the malleus oscillates about the ligament of the short process of the incus, whereas in response to high-frequency airborne sound (1–6 kHz) the ossicular chain rotates about the long axis of malleus. It is proposed that the club-shaped malleus head in C. asiatica constitutes an adaptation towards bimodal hearing—sensitivity to substrate vibrations and airborne sound. Possible functional differences between these two middle ear types are discussed.  相似文献   
7.
This study evaluated the effects of two different types of segmental/extra-segmental conditioning stimuli (tonic muscle pain and non-painful vibration) on the subjective experience (perceived pain intensity) and on the cortical evoked potentials to standardized test stimuli (cutaneous electrical stimuli). Twelve subjects participated in two separate sessions to investigate the effects of tonic muscle pain or cutaneous vibration on experimental test stimuli. The experimental protocol contained a baseline registration (test stimuli only), a registration with the test stimuli in combination with the conditioning stimuli, followed by a registration with the test stimuli only. In addition, the effects of the conditioning stimuli were examined at two anatomically separated locations (segmental and extra-segmental). Compared with the test stimulus alone, the perceived pain intensity and peak-to-peak amplitudes of the evoked potentials were unchanged in the presence of non-painful conditioning stimuli at either location. In contrast, a significant decrease of the perceived pain intensity and peak-to-peak amplitudes was found in the presence of painful conditioning stimuli at the extra-segmental sites. Moreover, the topographic maps of the 32-channel recordings suggested that the distribution of the scalp evoked potentials was almost symmetrical around the vertex Cz in the baseline registration. The evoked potentials were generally decreased during hypertonic saline infusion at the extra-segmental sites, but the distribution of the topographic maps did not appear to change. Vibration has previously been shown to inhibit pain, but in the present study the perceived intensity of phasic painful electrical stimuli was unchanged. The reduced perceived pain intensity and the smaller peak-to-peak amplitude of the evoked potential in the presence of extra-segmental conditioning pain are in accordance with the concept of diffuse noxious inhibitory control.  相似文献   
8.
The Pacinian channel has been implicated in the perception of fine textures (Hollins et al. , Somatosens Mot Res 18: 253-262, 2001a). In the present study, we investigate candidate codes for Pacinian-mediated roughness perception. We use a Hall effect transducer to record the vibrations elicited in the skin when a set of textured surfaces is passively presented to the index finger. The peak frequency of the vibrations is found to decrease systematically as spatial period increases. The power of the vibrations--weighted according to the spectral sensitivity of the Pacinian system--increases with spatial period for all but the coarsest surfaces. By varying the scanning velocity, we manipulate the temporal and intensive characteristics of the texture-induced vibrations and assess the effect of the manipulation on perceived roughness. We find that doubling the scanning velocity does not result in the substantial decrease in roughness predicted by a frequency theory of vibrotactile roughness perception. On the other hand, the effects of speed on roughness match those of speed on power. We propose that the roughness of a fine surface (spatial period<200 &#55 m) is a function of the Pacinian-weighted power of the vibrations it elicits.  相似文献   
9.
Vibrotactile thresholds depend on the characteristics of the vibration, the location of contact with the skin, and the geometry of the contact with the skin. This experimental study investigated vibrotactile thresholds (from 8 to 250?Hz) at five locations on the distal phalanx of the finger with two contactors: (i) a 1-mm diameter circular probe (0.78-mm2 area) with a 1-mm gap to a fixed circular surround (i.e., 7.1-mm2 excitation area), and (ii) a 6-mm diameter circular probe (28-mm2 area) with a 2-mm gap to a fixed circular surround (i.e., 79-mm2 excitation area). With both contactors, especially the smaller contactor at low frequencies (i.e., 8, 16, and 31.5?Hz), thresholds decreased towards the tip of the finger, although there was little variation around the whorl. With low frequencies of vibration, and at all five locations on the finger, similar thresholds were obtained with both contactors, consistent with the NPI channel not changing in sensitivity with a change in the area of stimulation. At high frequencies (i.e., 63, 125, and 250?Hz), thresholds were lower with the larger area of stimulation at all locations, except at the extreme tip of the finger, consistent with spatial summation in the Pacinian channel. It is concluded that with a 6-mm diameter contactor, moderate variations in location around the whorl have little influence on the measured thresholds. With the 1-mm diameter contactor there were greater variations in thresholds and extreme locations, near the nail and the distal interphalangeal joint, may be unsuitable for investigating sensorineural disorders.  相似文献   
10.
This study explores the subjective use of adjectives to verbally communicate vibrotactile stimulation across multiple frequencies. In total, nine different vibrotactile stimulus frequencies (10–300?Hz) were utilized, and subjective evaluation methods, which involved adjectives, were used to assess the sensory representations of the participants (18 healthy male participants; mean age, 22.9 years; standard deviation, 3.5). Sensory terms such as ‘slow,’ ‘protruding,’ and ‘thick’ were used as representative expressions to describe low-frequency (10–100?Hz) vibrotactile stimulations, while ‘fast,’ ‘shallow,’ and ‘tickly’ were used to describe high-frequency (225–300?Hz) vibrotactile stimulations. At the frequencies of 150 and 200?Hz, no characteristic word was found because there was no difference in subjective evaluation scores from other low or high frequencies. The results suggest that vibrotactile stimulation at different frequencies induce diverse sensory representations, owing to not only the motion and shape of the stimuli but also the subjective responses of the perceivers. The results of this study could be utilized in developing affective haptic devices in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号