首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   0篇
  国内免费   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   7篇
  2013年   5篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   8篇
  2008年   9篇
  2007年   8篇
  2006年   10篇
  2005年   6篇
  2004年   8篇
  2003年   4篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   6篇
  1998年   10篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1991年   6篇
  1990年   8篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   4篇
  1982年   1篇
  1976年   2篇
  1974年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
1.
Thermoanaerobacterium thermosulfurigenes EM1 has a gram-positive type cell wall completely covered by a surface layer (S-layer) with hexagonal lattice symmetry. The components of the cell envelope were isolated, and the S-layer protein was purified and characterized. S-layer monomers assembled in vitro into sheets with the same hexagonal symmetry as in vivo. Monosaccharide analysis revealed that the S-layer is associated with fucose, rhamnose, mannosamine, glucosamine, galactose, and glucose. The N-terminal 31 amino acid residues of the S-layer protein showed significant similarity to SLH (S-layer homology) domains found in S-layer proteins of different bacteria and in the exocellular enzymes pullulanase, polygalacturonate hydrolase, and xylanase of T. thermosulfurigenes EM1. The xylanase from T. thermosulfurigenes EM1 was copurified with the S-layer protein during isolation of cell wall components. Since SLH domains of some structural proteins have been shown to anchor these proteins noncovalently to the cell envelope, we propose a common anchoring mechanism for the S-layer protein and exocellular enzymes via their SLH domains in the peptidoglycan-containing layer of T. thermosulfurigenes EM1. Received: 23 October 1998 / Accepted: 21 December 1998  相似文献   
2.
Membrane composition and ion-permeability in extremophiles   总被引:1,自引:0,他引:1  
Abstract: Protons and sodium ions are the only used coupling ions in energy transduction in Bacteria and Archaea. At their growth temperature, the permeability of the cytoplasmic membrane of thermophilic bacteria to protons is high as compared to sodium ions. In some thermophiles, therefore, sodium is the sole energy coupling ion. Comparison of the proton- and sodium permeability of the membranes of variety of bacterial and archaeal species that differ in their optimal growth temperature reveals that the permeation processes of protons and sodium ions must occur by different mechanisms. The proton permeability increases with the temperature, and has a comparable value for most species at their respective growth temperatures. The sodium permeability is lower than the proton permeability and increases also with the temperature, but is lipid independent. Therefore, it appears that for most bacteria the physical properties of the cytoplasmic membrane are optimised to ensure a low proton permeability at the respective growth temperature.  相似文献   
3.
热休克蛋白60(HSP60)是细菌体内一种非常重要的分子伴侣,其可以协助蛋白质或肽链的正确折叠和构型,防止变性和降解。基于本实验室的早期观察,腾冲嗜热厌氧菌的HSP60是一个典型的温度相关蛋白质,在80℃的表达水平最高。为了进一步了解嗜热菌应急的分子机制,继续进行了在热激后HSP60基因表达的动态研究。将最适温度(75℃)下培养的腾冲嗜热厌氧菌迅速地转移至80℃继续培养,然后在不同的时间点上分别取样,并通过双向电泳、Western blot和Real_time PCR等方法,分析了HSP60在mRNA和蛋白质水平上的表达量的改变。试验结果表明,在80℃热处理4h内的短期应急过程中,HSP60蛋白水平一直呈上升趋势,而它的mRNA水平则表现为先升高后下降的一个非对称性的峰形变化。HSP60的mRNA和蛋白质的对温度的应答快慢程度是不同的。HSP60的mRNA水平的显著变化在1h内便可观察到,而蛋白质水平的显著改变要延迟3h左右。此外,HSP60的mRNA和蛋白质对温度的应答量变大小也是不同的。  相似文献   
4.
An NADPH thioredoxin reductase C was co-purified with a 2-Cys peroxiredoxin by the combination of anion exchange chromatography and electroelution from gel slices after native PAGE from a thermophilic cyanobacterium Thermosynechococcus elongatus as an NAD(P)H oxidase complex induced by oxidative stress. The result provided a strong evidence that the NADPH thioredoxin reductase C interacts with the 2-Cys peroxiredoxin in vivo. An in vitro reconstitution assay with purified recombinant proteins revealed that both proteins were essential for an NADPH-dependent reduction of H2O2. These results suggest that the reductase transfers the reducing power from NADPH to the peroxiredoxin, which reduces peroxides in the cyanobacterium under oxidative stress. In contrast with other NADPH thioredoxin reductases, the NADPH thioredoxin reductase C contains a thioredoxin-like domain in addition to an NADPH thioredoxin reductase domain in the same polypeptide. Each domain contains a conserved CXYC motif. A point mutation at the CXYC motif in the NADPH thioredoxin reductase domain resulted in loss of the NADPH oxidation activity, while a mutation at the CXYC motif in the thioredoxin-like domain did not affect the electron transfer, indicating that this motif is not essential in the electron transport from NADPH to the 2-Cys peroxiredoxin.  相似文献   
5.
A gene encoding haemolytic activity from Renibacterium salmoninarum (strain PPD) was cloned into Escherichia coli using the cosmid vector pHC79, and subsequently subcloned on a 1.6 kbp SAlI fragment into pBR328. Southern blot hybridisation revealed that a homologous sequence is found in other strains of R. salmoninarum.  相似文献   
6.
Continuous asymmetric reduction of 4-oxoisophorone by the thermophilic bacterium Thermomonospora curvata JTS321 was examined using three reactor systems: packed bed, fluidized bed and hollow fiber. T. curvata was immobilized in polyacrylamide-hydrazide gels when used in the packed and fluidized bed reactors. Of the three reactor systems, the highest productivity (964 mg.1-1.h-1) was observed in the fluidized bed reactor. However, many cells grew outside of the gel matrix, causing product contamination. The productivity of the hollow fiber reactor was 504 mg.1-1.h-1; the problem of cell contamination of the product was avoided, as the molecular cut-off of the hollow fibers (400 000) was of an appropriate size to prevent cell leakage to the product stream. We therefore consider that the hollow fiber reactor is most suitable for continuous microbial conversions.  相似文献   
7.
Biodiversity and ecology of acidophilic microorganisms   总被引:30,自引:0,他引:30  
  相似文献   
8.
Abstract A bacterium capable of growth from 59 to 72° C was isolated from geothermal soil collected from Mount Erebus, Ross Island, Antarctica. The isolate was enriched in medium containing thiosulphate and bicarbonate. Subsequently the organism was found also to be capable of heterotrophic growth and autotrophic growth in the presence of hydrogen and carbon dioxide. In a comparison with Bacillus schlegelii and Bacillus tusciae the isolate most closely resembled B. schlegelii . This conclusion was supported by the finding that B. schlegelii is also capable of autotrophic growth using thiosulphate. The new isolate had a characteristic subunit layer on the cell wall which is typical of B. schlegelii .  相似文献   
9.
10.
Chaperone function in water-miscible organic co-solvents is useful for biocatalytic applications requiring enzyme stability in semi-aqueous media and for understanding chaperone behavior in hydrophobic environments. Previously, we have shown that a recombinant single subunit thermosome (rTHS) from Methanocaldococcus jannaschii functions in multiple co-solvents to hydrolyze ATP, prevent protein aggregation, and refold enzymes following solvent denaturation. For the present study, a truncated analog to the thermosome in which 70 N-terminal amino acids are removed is used to identify important regions within the thermosome for its chaperoning functions in organic co-solvents. Data presented herein indicate that the N-terminal region of rTHS is essential for the chaperone to restore the native state of the enzyme citrate synthase, but it is not a critical region for either binding of unfolded proteins or ATP hydrolysis. This is the first demonstration that direct refolding by a Group II chaperonin requires the N-terminal region of the protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号