首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  国内免费   2篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2003年   2篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1995年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
以中华猕猴桃(ActinidiachinensisPlanch.)果实为试材,木葡聚糖内糖基转移酶(XET)cDNA为探针,研究果实成熟进程中XETmRNA的变化规律,探讨XET在果实后熟软化过程的作用。结果表明,20℃下外源乙烯处理可促进XETmRNA的积累,且这种效应因乙烯处理时间的加长而加强,进而加速了果实软化;0℃处理可抑制XETmRNA的增加,延缓果实软化,但当果实转入20℃后熟时,果实硬度迅速下降,而XETmRNA水平变化不明显。认为XET可能只是一种诱导酶,由它引起的细胞壁解聚并非是猕猴桃果实后熟软化的关键因子。  相似文献   
2.
Ripening of fleshy fruit: Molecular insight and the role of ethylene   总被引:1,自引:0,他引:1  
Development and ripening in fruit is a unique phase in the life cycle of higher plants which encompasses several stages progressively such as fruit development, its maturation, ripening and finally senescence. During ripening phase, several physiological and biochemical changes take place through differential expression of various genes that are developmentally regulated. Expression and/or suppression of these genes contribute to various changes in the fruit that make it visually attractive and edible. However, in fleshy fruit massive losses accrue during post harvest handling of the fruit which may run into billions of dollars worldwide. This encouraged scientists to look for various ways to save these losses. Genetic engineering appears to be the most promising and cost effective means to prevent these losses. Most fleshy fruit ripen in the presence of ethylene and once ripening has been initiated proceeds uncontrollably. Ethylene evokes several responses during ripening through a signaling cascade and thousands of genes participate which not only sets in ripening but also responsible for its spoilage. Slowing down post ripening process in fleshy fruit has been the major focus of ripening-related research. In this review article, various developments that have taken place in the last decade with respect to identifying and altering the function of ripening-related genes have been described. Role of ethylene and ethylene-responsive genes in ripening of fleshy fruit is also included. Taking clues from the studies in tomato as a model fruit, few case studies are reviewed.  相似文献   
3.
During ripening, fleshy fruits undergo textural changes that lead to loss of tissue firmness and consequent softening due to cell wall dismantling carried out by different and specifically expressed enzymes. The effect of various chemical treatments on the ripening of mango fruit (Mangifera indica) was investigated at physiological and biochemical level. Based on changes in respiration, firmness, pH, total soluble sugar and a cell wall degrading enzyme pectate lyase (PEL) activity, treatment with 1-methylcyclopropene (1-MCP), silver nitrate (AgNO3), gibberlic acid (GA3), sodium metabisulphite (SMS) and ascorbic acid led to delaying of ripening process while those of ethrel and calcium chloride (CaCl2) enhanced the process. PEL of mango was found to be inhibited by certain metabolites present in dialysed ammonium sulphate enzyme extract as well as EDTA. Mango PEL activity exhibited an absolute requirement for Ca2+ and an optimum pH of 8.5.  相似文献   
4.
The problem of theoretical explanation of the experimentally observed linear stiffening of living cells is addressed. This explanation is based on Ingber's assumption that the cell cytoskeleton, which enjoys tensegrity architecture with compressed microtubules that provide tension to the microfilaments, affects the mechanical behavior of the living cell. Moreover, it is shown that the consideration of the extreme flexibility of microtubules and the unilateral response of microfilaments is crucial for the understanding of the living cell overall behavior. Formal nonlinear structural analysis of the cell cytoskeleton under external mechanical loads is performed. For this purpose, a general computer model for tensegrity assemblies with unilateral microfilaments and buckled microtubules is developed and applied to the theoretical analysis of the mechanical response of 2D and 3D examples of tensegrity cells mimicking the behavior of real living cells. Results of the computer simulations explain the experimentally observed cell stiffening. Moreover, the theoretical results predict the possible existence of a transient softening behavior of cells, a phenomenon, which has not been observed in experiments yet.  相似文献   
5.
猕猴桃软化过程中阶段性专一酶活性变化的研究   总被引:42,自引:0,他引:42  
猕猴桃(Actinidia deliciosa C.F.Liang etA.R.Ferguson. cv. Qinm ei)果实采后的软化过程表现为两个明显的阶段,第一阶段软化较快,此时对软化起主要作用的阶段性专一酶是淀粉酶;第二阶段软化速度变慢,此时起主要作用的阶段性专一酶是多聚半乳糖醛酸酶和纤维素酶。乙烯形成酶(EFE)的活性高峰出现在两个软化阶段之间,它所引起的乙烯释放对软化有促进作用,因此EFE也是与果实软化有关的阶段性专一酶。但是,果胶甲酯酶(PME)的活性变化与果实的软化无相关关系,过氧化物酶(POX)、过氧化氢酶(CAT)和SOD的活性高峰出现在果实完全软化以后,因此不是果实软化的阶段性专一酶  相似文献   
6.
Thomas TR  Shackel KA  Matthews MA 《Planta》2008,228(6):1067-1076
Vitis vinifera L. berries are non-climacteric fruit that exhibit a double sigmoid growth pattern and dynamic changes in gene expression, cell metabolism, and water relations at the onset of ripening. The cell-pressure probe was utilized to examine the relationships of turgor pressure (P) in mesocarp cells to growth, sugar accumulation, and fruit softening during development. In replications utilizing three different varieties, mesocarp cell P demonstrated a consistent pattern of a relative mid-range P early in development, followed by an increase to a maximum of about 0.35 MPa, and a subsequent rapid decline before ripening to less than 0.1 MPa. Fruit “apparent elastic modulus” (E, units of MPa), was introduced as a standard measure to describe ripening-related softening. E changed dynamically and synchronously with P during development and in response to water deficits for fruit grown in greenhouse and field conditions. Thus, E and P were positively and linearly related. Sugar accumulation did not increase significantly until P had declined to less than 0.1 MPa. The results suggest that P is an important determinant of fruit softening and that P decreases in conjunction with many of the physiological and gene expression changes that are known to occur at the onset of ripening. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
7.
Exposure to high O2 concentrations may stimulate, have no effect or retard fruit ripening depending upon the commodity, O2 concentration and storage time among other variables. The ethylene-binding inhibitor 1-methylcyclopropene (1-MCP) was used to investigate ethylene-mediated softening responses of Williams banana fruit exposed to elevated O2 for various periods of time. Fruit softening was measured at 25 °C and 90% relative humidity. Exposure to high O2 concentrations for 5 days resulted in accelerated softening. Softening of fruit treated with 1-MCP for 12 h followed by 5 days of storage in high O2 atmospheres at 25 °C was enhanced with increasing O2 concentration between 21 and 100%. However, overall softening was much less compared to non-1-MCP-treated fruit. Softening of 1-MCP-treated fruit was progressively enhanced with increasing holding time from 5 to 20 days. Fruit treated with 1-MCP and then held for 10 days in high O2 atmospheres followed by exposure to ethylene for 24 h and subsequent storage for 5 days at 25 °C softened more rapidly than those held in air for 10 days. 1-MCP-treated fruit held in various high O2 atmospheres can regain gradually the sensitivity to ethylene and finally ripen over time. Enhanced softening of fruit exposed to elevated O2 concentrations suggests that high O2 treatments enhance synthesis of new ethylene binding sites.  相似文献   
8.
The activities of several stage specific enzymes (SSE) and the changes of some compounds during softening of “Qinmei” kiwifruit (Actinidia deliciosa) were studied. The resuits showed that there were two phases of kiwifruit softening. Firstly the rapid softening phase was coincided with starch degradation (r= 0. 99) and the increase of amylase activity. It suggested that amylase was the key SSE for softening at this phase. In the second phase, the rate of softening was decreased, the contents of water insoluble pectin and cellulose apparently were reduced and the activities of polygalacturoase (PG) and cellulase were markedly increased, which indicated the PG and cellulase were the key SSE in the second softening phase. Besides, ethylene forming enzyme (EFE) activity and ethylene production were at their peaks between the two phases as they might play the part as triggers of the PG and cellulase activities. The experiments also showed that the activity of pectin methylesterase (PME) was not related to the softening of kiwifruit. The maximum activities of peroxidase (POX), catalase (CAT) and superoxide dismutase (SOD) were found after the softening stages. It seemed that they were not the key SSE for the softening of kiwifruit.  相似文献   
9.
Heat-stable alkaline proteinase was purified from bigeye snapper (Priacanthus macracanthus) ordinary muscle by heat-treatment and a series of chromatographies including Phenyl-Sepharose 6 Fast Flow, Source 15Q and Superose 12 HR 10/30. It was purified to 5180-fold with a yield of 0.8%. The molecular weight of purified proteinase was estimated to be 72 kDa by gel filtration. The proteinase appeared as two proteinase activity bands with molecular weights of 66 and 13.7 kDa on non-reducing SDS-substrate gel. Accordingly, it was found to consist of two different subunits. The optimum pH and temperature for casein hydrolysis were 8.5 and 60 °C, respectively. The proteolytic activity was strongly inhibited by soybean trypsin inhibitor and partially inhibited by ethylenediaminetetraacetic acid, while pepstatin A and E-64 showed no inhibition. Purified proteinase was able to hydrolyze Boc-Phe-Ser-Arg-MCA, but rarely hydrolyzed Z-Phe-Arg-MCA and Z-Arg-Arg-MCA. In addition, it mainly degraded myosin heavy chain, not actin. These results suggest that purified proteinase was serine proteinase, which is probably involved in gel weakening of bigeye snapper surimi.  相似文献   
10.
Elevated temperatures experienced by harvested fruit can modulate theirripening. Moreover, heat treatments can be applied to reduce susceptibility tolow temperature disorders and to help control pests and diseases. Theethylene-binding inhibitor 1-methylcyclopropene (1-MCP) was used to investigatethe ethylene-mediated softening response of banana fruit exposed to elevatedtemperatures. A preliminary experiment was conducted to determine levels ofhightemperature (30–50°C) imposed for a short periodof time that did not cause skin scald. The softening response of Williamsbananafruit treated with 1-MCP at various temperatures and durations wascharacterisedin subsequent experiments. Exposure of fruit to hot air for 60 minat 45°C or for 30 min at50°Ccaused 30–40% peel scald. The peel was not visibly damaged forfruit treated at 40°C for up to 60 min.Softening of fruit treated with 1-MCP for 12 h at25°Cand then held for 7 days at 30, 35 or 40°C wasinhibited in proportion to increasing concentration over the range 0.01–1l/l 1-MCP. However, softening was progressively enhanced withincreasing holding temperatures from 30–40°Cand/or time from 1–7 days, although fruit treated with the higher 1-MCPconcentrations of 1 and 10 l/l were comparatively lessresponsive to heat. Although banana fruit held at30–40°Cdid not de-green, their increased softening at elevated temperatures andinhibition of this response by 1-MCP suggest that heat enhances synthesis ofnewethylene sites which mediated banana fruit softening.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号