首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  国内免费   1篇
  2020年   1篇
  2015年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2002年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
2.
A. Belver  R. L. Travis 《Protoplasma》1990,155(1-3):76-84
Summary The short-term effects of NaCl and mannitol stress on plasma membrane (PM) polypeptides from corn roots (Zea mays L.) were determined using two-dimensional gel electrophoresis following radiolabeled amino acid incorporation. After 2.5 hours, both stress treatments altered synthesis of several polypeptides. Changes included up-regulation of some polypeptides with concomitant down-regulation of others. Some changes were unique to the stress treatment while others were common to both NaCl and mannitol. No new polypeptides appeared in either case. Pulse-chase experiments following 0.5-hours and 2.5-hours incubation periods with radiolabeled amino acids did not reveal differences in turnover of PM polypeptides. The results support the contention that altered synthesis of PM proteins under stress may contribute to the alteration of membrane function.Abbreviations ER endoplasmic reticulum: GA Golgi - PM plasma membrane - PVPP polyvinylpolypyrrolidone  相似文献   
3.
Abscisic acid stress ripening (ASR1) is a highly charged low molecular weight plant specific protein that is regulated by salt- and water-stresses. The protein possesses a zinc-dependent DNA-binding activity (Kalifa et al., Biochem. J. 381 (2004) 373) and overexpression in transgenic plants results in an increased salt-tolerance (Kalifa et al., Plant Cell Environ. 27 (2004) 1459). There are no structure homologs of ASR1, thus the structural and functional domains of the protein cannot be predicted. Here, we map the protein domains involved in the binding of Zn(2+) and DNA. Using mild acid hydrolysis, and a series of ASR1 carboxy-terminal truncations we show that the zinc-dependent DNA-binding could be mapped to the central/carboxy-terminal domain. In addition, using MALDI-TOF-MS with a non-acidic matrix, we show that two zinc ions are bound to the amino-terminal domain. Other zinc ion(s) bind the DNA-binding domain. Binding of zinc to ASR1 induces conformational changes resulting in a decreased sensitivity to proteases.  相似文献   
4.
五大类传统植物激素对植物响应盐胁迫的调控   总被引:2,自引:0,他引:2  
综述盐胁迫下5大类传统植物激素的含量变化及外施植物生长调节剂对植物耐盐性的影响,阐述植物激素对植物响应盐胁迫应答的调控机制.  相似文献   
5.
We analysed the technique of grafting as a tool to increase salt-stress resistance in tobacco plants. With this aim, we performed two experiments. First, we selected, from among 6 commercial tobacco cultivars (cv. BB-162, cv. H-20, cv. Jarandilla, cv. ZB-3, cv. Havana II and cv. Havana 307) those most tolerant and sensitive to salinity, studying the response of certain nutritional and biochemical indicators of resistance in these plants. In the second experiment, we analysed the response to salinity in grafted tobacco plants using the rootstock of the most tolerant plants, and the scion of the most sensitive ones. In addition, these plants were subjected to salinity to test the viability and efficiency of this grafting technique, assessing the production of foliar biomass and the different quality parameters in this crop. In the first experiment, we found that the most tolerant tobacco cultivars were cv. BB-162 and cv. H-20, which were characterized by reduced uptake and foliar accumulation of Na+ and Cl, together with greater synthesis of sucrose and proline, thereby reducing lipid peroxidation and thus oxidative damage, reflected in higher foliar biomass with respect to the other cultivars studied (primarily cv. Jarandilla, defined as the most salt-sensitive). In the second, we demonstrated that the grafting of salt-sensitive tobacco scions to salt-tolerant rootstocks improves the production and quality of tobacco leaves under conditions of saline stress. Our results show that the rootstocks cv. BB-162 and cv. H-20 best induced salt resistance in tobacco cv. Jarandilla, registering the lowest foliar concentrations of Na+ and Cl+, the lowest lipid peroxidation, and the highest proline and sugar concentrations. Overall, this is reflected in better biomass production and quality of the aerial part of the plant.  相似文献   
6.
Zhou HL  Cao WH  Cao YR  Liu J  Hao YJ  Zhang JS  Chen SY 《FEBS letters》2006,580(5):1239-1250
Ethylene receptors sense ethylene and regulate downstream signaling events. Tobacco ethylene receptor NTHK1, possessing Ser/Thr kinase activity, has been found to function in plant growth and salt-stress responses. NTHK1 contains transmembrane domains, a GAF domain, a kinase domain and a receiver domain. We examined roles of these domains in regulation of plant leaf growth, salt-stress responses and salt-responsive gene expressions using an overexpression approach. We found that the transgenic Arabidopsis plants harboring the transmembrane domain plus kinase domain exhibited large rosettes, had reduction in ethylene sensitivity, and showed enhanced salt sensitivity. The transgenic plants harboring the transmembrane domain plus GAF domain also showed larger rosettes. Truncations of NTHK1 affected salt-induced gene expressions. Transmembrane domain plus kinase domain promoted RD21A and VSP2 expression but decreased salt-induction of AtNAC2. The kinase domain itself promoted AtERF4 gene expression. The GAF domain itself enhanced Cor6.6 induction. Moreover, the NTHK1 functional kinase domain phosphorylated the HIS and ATP subdomains, and five putative phosphorylation sites were identified in these two subdomains. In addition, the salt-responsive element of the NTHK1 gene was in the transmembrane-coding region but not in the promoter region. These results indicate that NTHK1 domains or combination of them have specific functions in plant leaf growth, salt-stress response, gene expression and protein phosphorylation.  相似文献   
7.
植物受到环境胁迫后体内会产生活性氧自由基等有害物质,破坏质膜透性,导致植物生长受到抑制。经研究发现脱落酸(ABA)和水杨酸(SA)作为植物的生长调节物质对于提高植物抗性,维持植物正常生长具有重要的意义。综述近年来国内外有关ABA和SA提高植物抗性的最新进展,为研究提高植物抗性提供理论参考。  相似文献   
8.
为了研究盐生植物耐盐基因表达调控,本实验以海水浇灌的海马齿植株为供试材料,构建了盐胁迫下的全长cDNA文库。构建方法如下:采用改良的CTAB法提取总RNA,SMART法反转录合成cDNA,LD-PCR方法合成双链cDNA。LD-PCR产物经蛋白酶K消化和SfiⅠ酶切后,经CHROMA SPIN+TE-1000分离柱子除去小片段DNA后,回收0.5kb以上的片段,按照适当的比例连接λTripIEX2载体。连接产物利用MaxPlaxTMLambda Packaging Extracts进行体外包装,得到海马齿初级cDNA文库。初始文库的独立克隆数为2.4×106pfu,初级文库滴度大于4.80×106pfu/mL,重组率为93.75%,插入片段为0.5~5kb,扩增文库的滴度为1.21×109pfu/mL,所得文库质量较高。本研究表明该cDNA文库适合于盐生植物海马齿相关基因的克隆和分析。  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号