首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2016年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1998年   1篇
  1992年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Summary Chrysomela aeneicollis (Coleoptera: Chrysomelidae) uses salicin from its host plant (Salix spp.) to produce a defensive secretion, salicylaldehyde. Because it requires salicin for this secretion, I predicted that C. aeneicollis should be attracted to willows which possess salicin and other salicylates. To test this prediction, I determined the host-plant preferences of C. aeneicollis among four potential hosts which occur in the Sierra Nevada range of eastern California. These species have very different salicylate chemistries but do not differ in nutritional quality for C. aeneicollis. In oviposition-preference tests, gravid females showed no preference between a salicylate-poor species, S. lutea, and a salicylate-rich species, S. orestera. However in feeding-choice tests, both larvae and adults preferred S. orestera over S. lutea. This preference was not affected by the species on which the larvae were reared. In other feeding tests, adults preferred S. orestera over two medium-salicylate species, S. boothi and S. geyeriana, regardless of which host species they had been feeding on in nature. In a final feeding test, adults were stimulated to feed by salicin itself. In nature, the relative abundances of C. aeneicollis adults and egg clutches among these species correspond to the adult feeding preference in the laboratory. Additionally, multiple regression analyses showed that adult abundance was not related to among-clone differences in leaf toughness or nutritional quality, but rather to salicin content and plant size. Thus for C. aeneicollis, both laboratory and field results demonstrate a preference for salicylate-rich willows which is partly responsible for the increased level of attack on them.  相似文献   
2.
The objective of the present study was to develop a new selective, differential and cost-effective medium (Kim and Rhee — KR-medium) for the isolation of Cronobacter spp. In this new medium, which contained salicin as a differential agent, Cronobacter spp. generated typical colonies with characteristic violet-colored centers surrounded by a transparent to opalescent border, and the growth of other microorganisms (40 strains) was inhibited or produced visually distinguishable colonies. Using healthy and heat- and desiccation-injured cells, the quantity of nutrients was adjusted to determine the optimal recovery rate, selectivity, differentiation and cost-effectiveness. Peptone and salicin concentrations were established as 10 and 8 g/L, respectively. The KR medium was then validated using salicin fermenting organisms, including Cronobacter spp. (52 strains), Enterobacter cloacae (50 strains) and Klebsiella pneumonia (10 strains) isolated from clinical and food specimens. All strains of Cronobacter spp. produced typical colonies and other salicin fermenting organisms were easily distinguishable from Cronobacter spp. with the exception of 2 E. cloacae strains. The verification of KR medium was carried out in powdered infant formula artificially inoculated with healthy, heat-injured, and desiccation-injured Cronobacter spp. and the expected typical colonies were appeared. The KR medium had a high specificity (98%) and sensitivity (100%), with no false-negative results. Moreover, we show that the cost of the KR medium is much lower than that of other selective and differential media. The use of the KR medium for the selective isolation of Cronobacter spp. in laboratories and food industry settings may therefore lessen the financial burden of Cronobacter spp. detection.  相似文献   
3.
The species of genus Salix, commonly known as Willow, are well known worldwide as rich source of medicinally important salicin derivatives and phenolic glycosides. The current study focuses on Salix acmophylla Bioss with the aim of identifying new bioactive constituents of this plant. Two new salicin glycosides, acmophyllin A (1), acmophyllin B (2) and five reported phenolic glycosides 3⿿7, were identified from S. acmophylla Bioss. NMR and mass spectroscopic techniques were employed to elucidate the structure of secondary metabolites of S. acmophylla. The new salicin glycosides were evaluated against three different cancer cell lines i.e., PSN-1 (pancreatic cancer cells), MCF-7 (breast cancer cells) and NCI-H460 (lung cancer cells). The acmophyllin A (1) exhibited cytotoxicity in a dose dependent manner against all three cancer cells (IC50 ⿼35⿿40 μM). Acmophyllin B (2) exhibited mild activity against PSN-1 cells and MCF-7 cancer cells. In addition, compounds 5 and 6 showed potent inhibition of oxidative burst in zymosan activated neutrophils by chemiluminescence technique, while no other compound were found to inhibit the production of reactive oxygen species (ROS).  相似文献   
4.
Amylosucrase (ASase, EC 2.4.1.4) is a member of family 13 of the glycoside hydrolases that catalyze the synthesis of an α-(1→4)-linked glucan polymer from sucrose instead of an expensive activated sugar, such as ADP- or UDP-glucose. Transglycosylation reactions mediated by the ASases of Deinococcus geothermalis (DGAS) and Neisseria polysaccharea (NPAS) were applied to the synthesis of salicin glycosides with sucrose serving as the glucopyranosyl donor and salicin as the acceptor molecule. Two salicin glycoside transfer products were detected by TLC and HPLC analyses. The synthesis of salicin glycosides was very efficient with NPAS with a yield of over 90%. In contrast, DGAS specifically synthesized only one salicin transglycosylation product. The transglycosylation products were identified as α-d-glucopyranosyl-(1→4)-salicin (glucosyl salicin) and α-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→4)-salicin (maltosyl salicin) by NMR analysis. The ratio between donor and acceptor had a significant effect on the type of product that resulted from the transglycosylation reaction. With more acceptors present in the reaction, more glucosyl salicin and less maltosyl salicin were synthesized.  相似文献   
5.
Arylaliphatic glycolipids are known for their pharmaceutical and medicinal properties. We found that a great variety of arylaliphatic esters can be synthesized from non-activated substrates like glucose or the natural occurring drug salicin using lipase B from Candida antarctica (CAL-B). However, esters based on aromatic carboxylic acids or unsaturated arylaliphatic acids, like cinnamic acid and its derivatives, which are known to display anticancer activity, could not be obtained. In this work, we performed computer-aided molecular modeling based on data of our work published recently and syntheses of new glycolipids to understand why some substances are accepted by CAL-B while some are not. For this purpose, we investigated the accessibility of the lipase binding site for the arylaliphatic acyl donors as well as the steric interactions between the aglycons of glucosides and the residues of the alcohol binding pocket in order to elucidate potentials and limitations of CAL-B for the synthesis of aromatic glycolipids.  相似文献   
6.
Methanol extracts of Kaempferia rotunda L. rhizomes yielded seven compounds including six polyoxygenated cyclohexane derivatives identified as (-)-6-acetylzeylenol (1), four acylated derivatives of 1-benzoyloxymethyl-1,6-epoxycyclohexan-2,3,4,5-tetrol (3-6), a Diels-Alder adduct of 3-benzoyl-1-benzoyloxymethylcyclohexa-4,6-dien-2,3-diol (7), and a triacylated derivative of salicin (9). The cyclohexane diepoxide, crotepoxide (8), was also obtained. Spectroscopic methods were used for structure determination. The methanol extract of the rhizomes of K. rotunda and (-)-2-acetyl-4-benzoyl-1-benzoyloxymethyl-1,6-epoxycyclohexan-2,3,4,5-tetrol (2-acetylrotepoxide B; 6), had antifeedant activity against larvae of Spodoptera littoralis. (-)-Zeylenol (2) also showed antifeedant activity, whereas (-)-6-acetylzeylenol (1) was inactive.  相似文献   
7.
Beta-Salicin is a naturally occurring glycoside found in the bark of poplar and willow trees. Ancient man used it as an analgesic and antipyretic. It has a D-glucopyranose unit attached by a beta-linkage to the phenolic hydroxyl of salicyl alcohol. Two new salicin analogues have been enzymatically synthesized by transglycosylation reactions: (a) by the reaction of Bacillus macerans cyclomaltodextrin glucanyltransferase with cyclomaltohexaose and salicyl alcohol, followed by reactions with alpha amylase and glucoamylase to give D-glucopyranose attached by an alpha-linkage to the phenolic hydroxyl of salicyl alcohol as the major product, alpha-salicin; and (b) by the reaction of Leuconostoc mesenteroides B-742CB dextransucrase with sucrose and salicyl alcohol, followed by reactions with dextranase and glucoamylase to give alpha-d-glucopyranose attached to the primary alcohol hydroxyl of salicyl alcohol as the major product, alpha-isosalicin.  相似文献   
8.
Since the 19th century the phytochemistry of the Salicaceae has been systematically investigated, initially for pharmaceutical and later for ecological reasons. The result of these efforts is a rich knowledge about the phenolic components, especially a series of glycosylated and esterified derivatives of salicyl alcohol known as “phenolic glycosides”. These substances have received extensive attention with regard to their part in plant-herbivore interactions. The negative impact of phenolic glycosides on the performance of many generalist herbivores has been reported in numerous studies. Other more specialized feeders are less susceptible and have even been reported to sequester phenolic glycosides for their own defense. In this review, we attempt to summarize our current knowledge about the role of phenolic glycosides in mediating plant-herbivore interactions. As background, we first review what is known about their basic chemistry and occurrence in plants.  相似文献   
9.
The leaves of Hasseltia floribunda were examined for their chemical constituents. Twelve phenolic glucosides, namely three hydroxycyclohexenyl acyl glucosides, four acylated salicortin derivatives, and five coumaroyl salicin derivatives, were isolated along with eight known phenolic glycosides, six known flavones, and two known sesquiterpenoid cyclohexenone derivatives. The structures of the isolated compounds were elucidated by NMR spectroscopic and HRMS spectrometric methods and by comparing analytical data with those of related structures.  相似文献   
10.
建立了一种反相高效液相色谱法测定柳枝皮提取物中水杨苷的含量.色谱柱为Shim-pack CLC-ODS(6.0 mm i.d×150 mm,5 μm),流动相为甲醇-0.01 mol/L磷酸二氢钾水溶液(体积比为20∶80),在213 nm波长处检测.研究结果表明:水杨苷的检测限为25 ng,线性范围为8.00~80.00 mg/L,回归方程为A=0.0642C(241.2501(r=0.999 5),加样平均回收率为94.32%.方法操作简便、快速、准确.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号