首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
  2013年   1篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2000年   3篇
  1998年   5篇
  1997年   2篇
  1992年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有36条查询结果,搜索用时 140 毫秒
1.
The redox chemistry of Pyrococcus furiosus rubredoxin and ferredoxin has been studied as a function of temperature in direct voltammetry and in EPR monitored bulk titrations. The Ems of both proteins, measured with direct voltammetry, have a normal (linear) temperature dependence and show no pH dependence. EPR monitoring is not a reliable method to determine the temperature dependence of the Em: upon rapid freezing the proteins take their conformation corresponding to the freezing point of the solution.  相似文献   
2.
Two flavo-diiron proteins (FDPs), FprA1 and FprA2, are up-regulated when the strictly anaerobic solvent producer, Clostridium acetobutylicum, is exposed to dioxygen. These two FDPs were purified following heterologous overexpression in Escherichia coli as N-terminal Strep-tag fusion proteins. The recombinant FprA1 and FprA2 were found to be homodimeric and homotetrameric, respectively, and both FDPs functioned as terminal components of NADH oxidases (NADH:O2 oxidoreductases) when using C. acetobutylicum NADH:rubredoxin oxidoreductase (NROR) and rubredoxin (Rd) as electron transport intermediaries. Both FDPs catalyzed the four-electron reduction of molecular oxygen to water with similar specific activities. The results are consistent with these FDPs functioning as efficient scavengers of intracellular dioxygen under aerobic or microoxic growth conditions.  相似文献   
3.
The high-resolution crystal structure of the small iron-sulfur protein rubredoxin (Rd) from the hyperthermophilic archeon Pyrococcus furiosus (Pf) is reported in this paper, together with those of its methionine ([_0M]Pf Rd) and formylmethionine (f[_0M]Pf Rd) variants. These studies were conducted to assess the consequences of the presence or absence of a salt bridge between the amino terminal nitrogen of Ala1 and the side chain of Glu14 to the structure and stability of this rubredoxin. The structure of wild-type Pf Rd was solved to a resolution of 0.95?Å and refined by full-matrix least-squares techniques to a crystallographic agreement factor of 12.8% [F>2σ(F) data, 25?617 reflections], while those of the [_0M]Pf and f[_0M]Pf Rd variants were solved at slightly lower resolutions (1.1?Å, R=11.5%, 17?213 reflections; 1.2?Å, R=13.7%, 12?478 reflections, respectively). The quality of the data was such that about half of the hydrogen atoms of the protein were clearly visible. All three structures were ultimately refined using the program SHELXL-93 with anisotropic atomic displacement parameters for all non-hydrogen protein atoms, and calculated hydrogen positions included but not refined. In this paper we also report thermostability data for all three forms of Pf Rd, and show that they follow the sequence wild-type >[_0M]Pf>formyl[_0M]Pf. Comparison of the three Pf Rd structures in the N-terminal region show that the structures of wild-type Pf Rd and f[_0M]Pf are rather similar, while that of [_0M]Pf Rd shows a number of additional hydrogen bonds involving the extra methionine group. While the salt bridge between the Ala1 amino group and the Glu14 carboxylate is not the primary determinant of the thermostability of Pf Rd, alterations to the amino terminus do have a moderate influence on the thermostability of this protein.  相似文献   
4.
 Desulforedoxin and the N-terminus of desulfoferrodoxin share a 36 amino acid domain containing a (Cys-S)4 metal binding site. Recombinant forms of desulforedoxin, an N-terminal fragment of desulfoferrodoxin, and two desulforedoxin mutant proteins were reconstituted with Fe3+, Cd2+, and Zn2+ and relative metal ion affinities assessed by proton titrations. Protons compete with metal for protein ligands, a process that can be followed by monitoring the optical spectrum of the metal-protein complex as a function of pH. For all polypeptides, Fe3+ bound with the highest affinity, whereas the affinity of Zn2+ was greater than Cd2+ in desulforedoxin and the N-terminal fragment of desulfoferrodoxin, but this order was reversed in desulforedoxin mutant proteins. Metal binding in both mutants was significantly impaired. Furthermore, the Fe3+ complex of both mutants underwent a time-dependent bleaching process which coincided with increased reactivity of cysteine residues to Ellman's reagent and concomitant metal dissociation. It is hypothesized that this results from an autoredox reaction in which Fe3+ is reduced to Fe2+ with attendant oxidation of ligand thiols. Received: 17 June 1998 / Accepted: 3 September 1998  相似文献   
5.
The solution structure of reduced Clostridium pasteurianum rubredoxin (MW 6100) is reported here. The protein is highly paramagnetic, with iron(II) being in the S=2 spin state. The Hβ protons of the ligating cysteines are barely observed, and not specifically assigned. Seventy-six percent of the protons have been assigned and 1267 NOESY peaks (of which 1037 are meaningful) have been observed. Nonselective T 1 measurements have been measured by recording four nonselective 180°-τ-NOESY at different τ values, and fitting the intensity recoveries to an exponential recovery. Thirty-six metal-proton upper and lower distance constraints have been obtained from the above measurements. The use of such constraints is assessed with respect to spin delocalization on the sulfur donor atoms. The solution structure obtained with the program DYANA has been refined through restrained energy minimization. A final family of 20 conformers is obtained with no distance violations larger than 0.24?Å, and RMSD values to the mean structure of 0.58 and 1.03?Å for backbone and all heavy atoms, respectively (measured on residues 3–53). The structure is compared to the X-ray structure of the oxidized and of the zinc substituted protein, and to the available structures of other rubredoxins. In particular, the comparison with the crystal structure and the solution structure of the Zn derivative of the highly thermostable Pyrococcus furiosus rubredoxin suggested that the relatively low thermal stability of the clostridial rubredoxin may be tentatively ascribed to the loosening of its secondary structure elements. This research is a further achievement at the frontier of solution structure determinations of paramagnetic proteins.  相似文献   
6.
 The Pri sidechains of two adjacent valine residues, V8 and V44, define the surface of the rubredoxin from Clostridium pasteurianum and control access to its Fe(S-Cys)4 active site. To assess the effect of systematic change of the steric bulk of the alkyl sidechains, eight single and three double mutant proteins have been isolated which vary G (H), A (Me), V (Pri), L (Bui) and I (Bus) at those positions. X-ray crystal structures of the FeIII forms of the V44A and V44I proteins are reported. Positive shifts in reversible potential of up to 116 mV are observed and attributed to increased polarity around the Fe(S-Cys)4 site induced by (1) changes in protein backbone conformation driven by variation of the steric demands of the sidechain substituents and (2) changes in solvent access to the sidechains of ligands C9 and C42. Data for the V44A mutant show that a minor change in the steric requirements of a surface residue can introduce a NH···Sγ hydrogen bond at the active site and lead to a shift in potentialof +50 mV. Received: 20 Juli 1999 / Accepted: 27 October 1999  相似文献   
7.
Rubredoxin (D.g. Rd) is a small non-heme iron-sulfur protein shown to function as a redox coupling protein from the sulfate reducing bacteria Desulfovibrio gigas. The protein is generally purified from anaerobic bacteria in which it is thought to be involved in electron transfer or exchange processes. Rd transfers an electron to oxygen to form water as part of a unique electron transfer chain, composed by NADH:rubredoxin oxidoreductase (NRO), rubredoxin and rubredoxin:oxygen oxidoreductase (ROO) in D.g. The crystal structure of D.g. Rd has been determined by means of both a Fe single-wavelength anomalous dispersion (SAD) signal and the direct method, and refined to an ultra-high 0.68 A resolution, using X-ray from a synchrotron. Rd contains one iron atom bound in a tetrahedral coordination by the sulfur atoms of four cysteinyl residues. Hydrophobic and pi-pi interactions maintain the internal Rd folding. Multiple conformations of the iron-sulfur cluster and amino acid residues are observed and indicate its unique mechanism of electron transfer. Several hydrogen bonds, including N-H...SG of the iron-sulfur, are revealed clearly in maps of electron density. Abundant waters bound to C-O peptides of residues Val8, Cys9, Gly10, Ala38, and Gly43, which may be involved in electron transfer. This ultrahigh-resolution structure allows us to study in great detail the relationship between structure and function of rubredoxin, such as salt bridges, hydrogen bonds, water structures, cysteine ligands, iron-sulfur cluster, and distributions of electron density among activity sites. For the first time, this information will provide a clear role for this protein in a strict anaerobic bacterium.  相似文献   
8.
Rubredoxin is a small iron-sulfur (FeS4) protein involved in oxidation–reduction reactions. The side chain of Leu41 near the iron-sulfur center has two conformations, which we suggested previously serve as a gate for a water molecule during the electron transfer process. To establish the role of residue 41 in electron transfer, an [L41A] mutant of Clostridium pasteurianum rubredoxin was constructed and crystallized in both oxidation states. Despite the lack of the gating side chain in this protein, the structure of the reduced [L41A] rubredoxin reveals a specific water molecule in the same position as observed in the reduced wild-type rubredoxin. In contrast, both the wild-type and [L41A] rubredoxins in the oxidized state do not have water molecules in this location. The reduction potential of the [L41A] variant was ~50 mV more positive than wild-type. Based on these observations, it is proposed that the site around the S of Cys9 serves as a port for an electron acceptor. Lastly, the Fe–S distances of the reduced rubredoxin are expanded, while the hydrogen bonds between S of the cysteines and the backbone amide nitrogens are shortened compared to its oxidized counterpart. This small structural perturbation in the Fe(II)/Fe(III) transition is closely related to the small energy difference which is important in an effective electron transfer agent.  相似文献   
9.
In oxygenic photosynthesis, two photosystems work in tandem to harvest light energy and generate NADPH and ATP. Photosystem II (PSII), the protein-pigment complex that uses light energy to catalyze the splitting of water, is assembled from its component parts in a tightly regulated process that requires a number of assembly factors. The 2pac mutant of the unicellular green alga Chlamydomonas reinhardtii was isolated and found to have no detectable PSII activity, whereas other components of the photosynthetic electron transport chain, including photosystem I, were still functional. PSII activity was fully restored by complementation with the RBD1 gene, which encodes a small iron-sulfur protein known as a rubredoxin. Phylogenetic evidence supports the hypothesis that this rubredoxin and its orthologs are unique to oxygenic phototrophs and distinct from rubredoxins in Archaea and bacteria (excluding cyanobacteria). Knockouts of the rubredoxin orthologs in the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana were also found to be specifically affected in PSII accumulation. Taken together, our data suggest that this rubredoxin is necessary for normal PSII activity in a diverse set of organisms that perform oxygenic photosynthesis.  相似文献   
10.
Summary A method is described for measurement of small unresolvable heteronuclear J couplings. The method is based on quantitative analysis of a phase-purged heteronuclear spin-echo difference spectrum, and is demonstrated for measuring1H-113Cd and1H-199Hg J couplings in metal-substituted rubredoxin (Mr 5.4 kDa) fromPyrococcus furiosus. Couplings from cadmium to backbone amide protons that are hydrogen bonded to the Cys-S atoms directly bonded to Cd vary from smaller than 0.3 to 1.8 Hz; a through-space coupling between Cd and the protons of an alanine methyl group was measured to be 0.3 Hz. Couplings to199Hg are significantly larger and fall in the 0.4–4 Hz range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号