首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
  2022年   1篇
  2012年   1篇
  2009年   1篇
  2003年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有6条查询结果,搜索用时 343 毫秒
1
1.
为探索猕猴神经干细胞分化及特性维持,推进神经干细胞临床应用研究,该实验以绿色荧光蛋白(green fluorescence protein,GFP)为标记探讨猕猴胚胎干细胞向玫瑰花环(rosettes)结构神经干细胞的分化及其碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)和表皮生长因子(epidermal growth factor,EGF)的扩增培养。结果表明:1)建立了稳定高效的猕猴神经干细胞分化体系,在该分化体系下,GFP标记猕猴胚胎干细胞在分化的第12天时,95%以上的细胞分化为神经干细胞;2)分化得到的Rosettes结构神经干细胞经bFGF/EGF扩增后,能够较好地维持其Rosettes结构;3)经bFGF/EGF扩增后的rosettes结构神经干细胞移植到猕猴脑内后能够较好的存活并向神经元分化,即bFGF/EGF扩增培养能较好地维持Rosettes结构的神经干细胞,且移植到猕猴脑内的该细胞亦能够较好地存活并向神经元分化,该结果为神经干细胞应用于临床提供了基础理论依据。  相似文献   
2.
Summary Rosettes of six particles have been visualized by freeze-fracture in the protoplasmic fracture (PF) faces of: a) the plasma membrane, b) Golgi cisternae, and c) Golgi-derived vesicles in mesophyll cells ofZinnia elegans that had been induced to differentiate synchronously into tracheary elements in suspension culture. These rosettes have been observed previously in the PF face of the plasma membranes of a variety of cellulose-synthesizing cells and are thought to be important in cellulose synthesis. InZinnia tracheary elements, the rosettes are localized in the membrane over regions of secondary wall thickening and are absent between thickenings. The observation of rosettes in the Golgi cisternae and vesicles suggests that the Golgi apparatus is responsible for the selective transport and exocytosis of rosettes in higher plants, as has been previously indicated in the algaMicrasterias (Giddings et al. 1980). The data presented indicate that the Golgi apparatus has a critical role in the control of cell wall deposition because it is involved not only in the synthesis and export of matrix components but also in the export of an important component of the cellulose synthesizing apparatus. The rosettes are present in the plasma membrane and Golgi vesicles throughout the enlargement of the secondary thickening, suggesting that new rosettes must be continually inserted into the membrane to achieve complete cell wall thickening.Abbreviations EF Golgi vesicles, exoplasmic fracture; the plasma membrane, extracellular fracture - PF protoplasmic fracture  相似文献   
3.
Irrigation and fertilisation were recently considered as useful tools to control tree shape, and reduce pruning costs. The role of the N reserves, which determined spring growth, was considered to be essential. We intended therefore to evaluate its effects on peach tree architecture. Four levels of N fertilisation were applied on 1-year-old trees, from the end of shoot growth to leaf fall. In subsequent spring, each bud fell into one of the ten classes of positions previously defined within the crown. Its development was followed weekly from burst to June. Fertilisation promoted growth until a threshold level, since no differences were evidenced between the three highest N treatments. Fall N did not affect burst but the further transformation of the buds into rosettes, proleptic or ramificated axes. Crown base was little affected. Fall N increased the number of proleptic axes on most median and upper positions. Axes lengthening and thickening were limited on the median positions, promoted at crown top. The variations concerned the mean internodes lengths, not the number of phytomers per axis. Sylleptic ramification was limited to the crown outer parts, and decreased with fall N. Treatment did neither affect the fruit dry weights, nor the ratio between the number of leaves and the number of fruits. Fruit number was proportioned to vegetative growth by blossoming and fruit set. We conclude that a moderate autumn fertilisation improved orchard productivity, but favoured vegetative growth in the crown outer parts. Additional pruning may therefore be required to control tree shape.  相似文献   
4.
Kiedaisch BM  Blanton RL  Haigler CH 《Planta》2003,217(6):922-930
The physiological effects of an experimental herbicide and cellulose synthesis inhibitor, N2-(1-ethyl-3-phenylpropyl)-6-(1-fluoro-1-methylethyl)-1,3,5-triazine-2,4-diamine, called AE F150944, are described. In the aminotriazine molecular class, AE F150944 is structurally distinct from other known cellulose synthesis inhibitors. It specifically inhibits crystalline cellulose synthesis in plants without affecting other processes that were tested. The effects of AE F150944 on dicotyledonous plants were tested on cultured mesophyll cells of Zinnia elegans L. cv. Envy, which can be selectively induced to expand via primary wall synthesis or to differentiate into tracheary elements via secondary wall synthesis. The IC50 values during primary and secondary wall synthesis in Z. elegans were 3.91×10–8 M and 3.67×10–9 M, respectively. The IC50 in suspension cultures of the monocot Sorghum halapense (L.) Pers., which were dividing and synthesizing primary walls, was 1.67×10–10 M. At maximally inhibitory concentrations, 18–33% residual crystalline cellulose synthesis activity remained, with the most residual activity observed during primary wall synthesis in Z. elegans. Addition to Z. elegans cells of two other cellulose synthesis inhibitors, 1 M 2,6-dichlorobenzonitrile and isoxaben, along with AE F150944 did not eliminate the residual cellulose synthesis, indicating little synergy between the three inhibitors. In differentiating tracheary elements, AE F150944 inhibited the deposition of detectable cellulose into patterned secondary wall thickenings, which was correlated with delocalization of lignin as described previously for 2, 6-dichlorobenzonitrile. Freeze-fracture electron microscopy showed that the plasma membrane below the patterned thickenings of AE F150944-treated tracheary elements was depleted of cellulose-synthase-containing rosettes, which appeared to be inserted intact into the plasma membrane followed by their rapid disaggregation. AE F150944 also inhibited cellulose-dependent growth in the rosette-containing alga, Spirogyra pratensis, but it did not inhibit cellulose synthesis in Acetobacter xylinum or Dictyostelium discoideum, both of which synthesize cellulose via linear terminal complexes. Therefore, AE F150944 may inhibit crystalline cellulose synthesis by destabilizing plasma membrane rosettes.Abbreviations AE F150944 N2-(1-ethyl-3-phenylpropyl)-6-(1-fluoro-1-methylethyl)-1,3,5-triazine-2,4-diamine - CBI cellulose biosynthesis inhibiting - CGA CGA 325615, 1-cyclohexyl-5-(2,3,4,5,6-pentafluorophenoxy)-14,2,4,6-thiatriazin-3-amine - DCB 2,6-dichlorobenzonitrile - TE tracheary element  相似文献   
5.
Summary YoungFunaria protonemata were treated with Monensin (10–6 M) and Cytochalasin (CB) (2×10–5 M). The influence of the inhibitors on a) elongation growth, b) cell fine structure and c) particle rosettes within the plasma membrane after freeze fracture was observed. Monensin stopped cell growth, caused swelling of the mitochondria and plastids and inhibited the secretory activity of the Golgi apparatus within about 15 minutes. The number of rosettes in the PF of the plasma membrane was distinctly reduced after 4–5 minutes and decreased further to only very few after 30 minutes. The tip to base gradient in distribution was maintained for a long time. The effects were reversible, regeneration occurred within 3 hours. CB treatment showed no effect on elongation growth and cell fine structure. The number of rosettes, however, was strongly reduced within 3 minutes exposure time and their distribution was nearly uniform then. Number and tip to base gradient increased again after 6 minutes intoxication. The results are discussed in regard to the turn over of the rosettes.Abbreviations CB Cytochalasin B - PF protoplasmic fracture face - F-vesicle flat vesicle - F-Actin filamentous actin - G-Ac-tin globular actin  相似文献   
6.
Bacteria within the phylum Planctomycetota are biologically relevant due to unique characteristics among prokaryotes. Members of the genus Rhodopirellula can be abundant in marine habitats, however, only six species are currently validly described. In this study, we expand the explored genus diversity by formally describing a novel species. The pink-coloured strain ICT_H3.1T was isolated from brackish sediments collected in the Tagus estuary (Portugal) and a 16S rRNA gene sequence-based analysis placed this strain into the genus Rhodopirellula (family Pirellulaceae). The closest type strain is Rhodopirellula rubra LF2T, suggested by a similarity of 98.4% of the 16S rRNA gene sequence. Strain ICT_H3.1T is heterotrophic, aerobic and able to grow under microaerobic conditions. The strain grows between 15 and 37 °C, over a range of pH 6.5 to 11.0 and from 1 to 8% (w/v) NaCl. Several nitrogen and carbon sources were utilized by the novel isolate. Cells have an elongated pear-shape with 2.0 ± 0.3 × 0.9 ± 0.2 µm in size. Cells of strain ICT_H3.1T cluster in rosettes through a holdfast structure and divide by budding. Younger cells are motile. Ultrathin cell sections show cytoplasmic membrane invaginations and polar fimbriae. The genome size is 9,072,081 base pairs with a DNA G + C content of 56.1 mol%. Genomic, physiological and morphological comparison of strain ICT_H3.1T with its relatives suggest that it belongs to a novel species within the genus Rhodopirellula. Hence, we propose the name Rhodopirellula aestuarii sp. nov., represented by ICT_H3.1T (=CECT30431T = LMG32464T) as the type strain of this novel species.16S rRNA gene accession number: GenBank = OK001858.Genome accession number: The Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JAMQBK000000000. The version described in this paper is version JAMQBK010000000.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号