首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2013年   5篇
  2011年   1篇
  2009年   1篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
排序方式: 共有12条查询结果,搜索用时 161 毫秒
1.
The excessive production of reactive oxygen species (ROS) associated with inflammation leads to oxidative stress, which is involved with the high mortality from several diseases such as endotoxic shock and can be controlled to a certain degree by antioxidants. The immune cells use ROS in order to support their functions and, therefore, need adequate levels of antioxidant defenses in order to avoid the harmful effect of an excessive ROS production. In the present work, the effect of the administration of the antioxidant N-acetylcysteine (NAC) on the redox state of peritoneal macrophages and lymphocytes from mice with lethal endotoxic shock (100 mg/kg i.p. of lipopolysaccharide, LPS), was studied. In both types of immune cells at 0, 2, 4, 12 and 24 h after LPS injection, an increase of ROS, of the proinflammatory cytokine tumor necrosis factor alpha (TNFα), the lipid peroxidation (malonaldehyde levels, MDA), inducible nitric oxide synthase (iNOS) expression and the oxidized/reduced glutathione (GSSG/GSH) ratio, as well as a decrease of enzymatic antioxidant defenses, such as superoxide dismutase (SOD) and catalase (CAT) activity, was observed. The injection of NAC (150 mg/kg i.p. at 30 min after LPS injection) decreased the ROS, the TNFα the MDA levels, iNOS expression and the GSSG/GSH ratio, and increased the antioxidant defenses in both macrophages and lymphocytes. Moreover, the NAC treatment prevented the activation of nuclear translocation of the nuclear factor κB (NF-κB), which regulates ROS, inflammatory cytokines and antioxidant levels. Our present results provide evidence that both cell types have a relevant role in the pathogenesis of endotoxic shock, and that NAC, by improving the redox state of these immune cells, could increase mouse survival. Thus, antioxidants could offer an alternative treatment of human endotoxic shock.  相似文献   
2.

Background

Duchenne muscular dystrophy (DMD), a severe neuromuscular disorder, is caused by protein‐truncating mutations in the dystrophin gene. Absence of functional dystrophin renders muscle fibres more vulnerable to damage and necrosis. We report antisense oligomer (AO) induced exon skipping in the B6Ros.Cg‐Dmdmdx–4Cv/J (4CV) mouse, a muscular dystrophy model arising from a nonsense mutation in dystrophin exon 53. Both exons 52 and 53 must be excised to remove the mutation and maintain the reading frame.

Methods

A series of 2′‐O‐methyl modified oligomers on a phosphorothioate backbone (2OMeAOs) were designed and evaluated for the removal of each exon, and the most effective compounds were then combined to induce dual exon skipping in both myoblast cultures and in vivo. Exon skipping efficiency of 2OMeAOs and phosphorodiamidate morpholino oligomers (PMOs) was evaluated both in vitro and in vivo at the RNA and protein levels.

Results

Compared to the original mdx mouse studies, induction of exon skipping from the 4CV dystrophin mRNA was far more challenging. PMO cocktails could restore synthesis of near‐full length dystrophin protein in cultured 4CV myogenic cells and in vivo, after a single intramuscular injection.

Conclusions

By‐passing the protein‐truncating mutation in the 4CV mouse model of muscular dystrophy could not be achieved with single oligomers targeting both exons and was only achieved after the application of AO cocktails to remove exons 52 and 53. As in previous studies, the stability and efficiency of PMOs proved superior to 2OMeAOs for consistent and sustained protein induction in vivo. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
3.
4.
Ros is a chromosomally-encoded repressor containing a novel C2H2 zinc finger in Agrobacterium tumefaciens. Ros regulates the expression of six virulence genes and an oncogene on the Ti plasmid. Constitutive expression of these genes occurs in the spontaneous mutant 4011R derived from the octopine strain Ach-5, resulting in T-DNA processing in the absence of induction, and in the biosynthesis of cytokinin. Interestingly, the mutation in 4011R is an Arg to Cys conversion at amino acid residue 125 near the C-terminus well outside the zinc finger of Ros. Yet, Ros bearing this mutation is unable to bind to the Ros-box and is unable to complement other ros mutants.  相似文献   
5.
Induction of heme oxygenase-1 (HO-1) may serve as an immediate protective response during treatment with the cytostatic drug cisplatin (CDDP). Oxidative pathways participate in the characteristic nephrotoxicity of CDDP. In the present study, cultured tubular cells (LLC-PK1) were used to investigate whether induction of HO provided protection against CDDP by maintaining the cellular redox balance. The antioxidants, &#102 -tocopherol (TOCO) and N -acetylcysteine (NAC), were used to demonstrate that elevation of ROS levels contribute to the development of CDDP-induced cytotoxicity. Chemical modulators of HO activity were used to investigate the role of HO herein. Hemin was used to specifically induce HO-1, while exposure of the cells to tin-protoporphyrin (SnPP) was shown to inhibit HO activity. Hemin treatment prior to CDDP-exposure significantly decreased the generation of ROS to control levels, while inhibition of HO increased the ROS levels beyond the levels measured in cells treated with CDDP alone. Furthermore, HO induction protected significantly against the cytotoxicity of CDDP, although this protection was limited. Similar results were obtained when the cells were preincubated with TOCO, suggesting that mechanisms other than impairment of the redox ratio are important in CDDP-induced loss of cell viability in vitro. In addition, SnPP treatment exacerbated the oxidative response and cytotoxicity of CDDP, especially at low CDDP concentrations. We therefore conclude that HO is able to directly limit the CDDP-induced oxidative stress response and thus serves as safeguard of the cellular redox balance.  相似文献   
6.
The present work was focused on finding a relationship between reactive oxygen species (ROS) and lovastatin biosynthesis (secondary metabolism) in Aspergillus terreus. In addition, an effort was made to find differences in accumulation and control of ROS in submerged (SmF) and solid-state fermentation (SSF), which could help explain higher metabolite production in the latter. sod1 expression, ROS content, and redox balance kinetics were measured during SmF and SSF. Results showed that A. terreus sod1 gene (oxidative stress defence enzyme) was intensely expressed during rapid growth phase (trophophase) of lovastatin fermentations. This high expression decreased abruptly, just before the onset of production (idiophase). However, ROS measurements detected high concentrations only in idiophase, suggesting a link between ROS and lovastatin biosynthesis. Apparently sod1 down regulation promotes the rise of ROS during idiophase. This oxidative state in idiophase was further supported by a high redox balance observed in trophophase that changed to a low value in idiophase (around six-fold lower). The patterns of ROS accumulation, sod1 expression, and redox balance behaviour were similar in SmF and SSF. However, sod1 expression and ROS concentration (ten-fold), were higher in SmF. Our results indicate a link between ROS and lovastatin biosynthesis. Also, showed differences of physiology in SSF that yield lower but more steady ROS concentrations, which could be associated to higher lovastatin production.  相似文献   
7.
罗格列酮和血清脂对绵羊前体脂肪细胞分化的影响   总被引:1,自引:0,他引:1  
目的探讨罗格列酮(rosiglitazone,Ros)和血清脂(serum lipid,Lip)对绵羊前体脂肪细胞分化的影响及不同组织来源的前体脂肪细胞分化影响的差异。方法用不同浓度的Ros和(或)Lip培养绵羊皮下前体脂肪细胞和肾周前体脂肪细胞,通过测量3-磷酸甘油脱氢酶(GPDH)活性和油红O染色萃取液A值分析前体脂肪细胞的分化程度和脂肪细胞充脂量的变化,应用实时荧光定量PCR检测PPARγ和LPL mRNA的表达水平。结果 Ros和Lip提高细胞GPDH活性和脂滴的沉积量(P<0.05),上调LPL mRNA表达(P<0.05),最佳浓度分别为100nmol/L和20μL/mL;最佳浓度条件下Ros的诱导作用强于Lip(P<0.05),Ros显著提高了PPARγmRNA表达量(P<0.05),而Lip对PPARγmRNA的表达没有明显影响(P>0.05);Ros和Lip共同诱导与Ros单独作用之间没有明显差异(P>0.05);在相同诱导分化条件下,皮下前体脂肪细胞的分化程度高于肾周前体脂肪细胞(P<0.05)。结论研究结果表明Ros和Lip可促进绵羊前体脂肪细胞的分化,在相同条件下,皮下前体脂肪细胞的分化能力强于肾周前体脂肪细胞。  相似文献   
8.
Electron spin resonance (ESR) spectra of radicals obtained from two analogues of the antiprotozoal drug nifurtimox by electrolytic and Trypanosoma cruzi reduction were analyzed. The electrochemistry of these compounds was studied using cyclic voltammetry. STO 3-21G ab initio and INDO molecular orbital calculations were performed to obtain the optimized geometries and spin distribution, respectively. The antioxidant effect of glutathione on the nitroheterocycle radical was evaluated. DMPO spin trapping was used to investigate the possible formation of free radicals in the trypanosome microsomal system. Nitro1 and Nitro2 nitrofuran analogues showed better antiparasitic activity than nifurtimox. Nitro2 produced oxygen redox cycling in T. cruzi epimastigotes. The ESR signal intensities were consistent with the trapping of either the hydroxyl radical or the Nitro2 analogue radicals. These results are in agreement with the biological observation that Nitro2 showed anti-Chagas activity by an oxidative stress mechanism.  相似文献   
9.
10.
Muscle weakness and reduced exercise capacity are frequent complaints of patients with chronic uremia. Several lines of evidence have suggested that chronic uremia result in a state of increased oxidative stress. Reactive oxygen species (ROS) and free radicals are capable of damaging lipids and proteins but it remains unclear whether oxidative damage plays a role in the skeletal myopathy commonly seen in chronic uremia. In this cross-sectional study, we compared the levels of oxidative damage to proteins and lipids of skeletal muscle from 40 chronic uremic patients and 20 age- and sex-matched healthy subjects. Protein carbonyls were determined by a spectrophotometric method to assess the oxidative damage to proteins. Our results showed that the mean content of protein carbonyls in skeletal muscles was significantly elevated in the hemodialysis patients ( 3.78 ±0.14 nmol of 2,4-dinitrophenyl-hydrazone per mg of protein) as compared to healthy controls (2.97 ±0.28 nmol per mg of protein, p =0.017 vs normal controls). In addition, we found that the mean malondialdehyde (MDA) level was also significantly increased in the uremic patients compared to healthy controls. Further analysis revealed that there was an age-dependent increase in both oxidative damages in these patients. Regression analysis between plasma protein carbonyl and MDA levels showed a significant correlation between these two parameters ( r =0.43, p =0.002). The finding of increased oxidative damage to protein and lipids provide support that oxidative damage may play a role in the pathogenesis of skeletal myopathy in chronic uremic patients on hemodialysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号