首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2005年   1篇
  2002年   1篇
  2000年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1981年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
Aim Our aims were to verify the existence of phylogenetic disequilibrium between butterfly lineages at the subcontinental scale for islands and the nearest mainland and to test the capacity of islands for hosting ancestral populations of butterflies and the significance of such relict populations. Location The western Mediterranean continental area of Europe and North Africa together with several large and small islands (Balearics, Tuscan Archipelago, Aeolian Archipelago, Capri, Sardinia, Sicily, Corsica). Methods Using geometric morphometrics, the shape of male genitalia was analysed in two common butterflies (Pyronia cecilia and Pyronia tithonus), whose spatial heterogeneity in the Mediterranean region has recently been described. Observed patterns in genital shapes were compared with shapes predicted for islands and fossil islands to assess the contribution of historical and current events in accounting for the transition from a refugial model to an equilibrium model. Measurements were taken for 473 specimens in 90 insular and mainland sites. Results The shape of the genitalia of populations of most islands differed substantially from that predicted by the equilibrium hypothesis while closely fitting the refugial hypothesis. The comparison between different models strongly suggests that islands maintain ancestral lineages similar to those living in Spain (P. cecilia) and France (P. tithonus). A high correlation between observed and predicted patterns on islands and fossil islands occurs during the first steps of modelled introgressive hybridization while the following steps exposed a successively lower fit, suggesting that the process from a refugial to an equilibrium situation is highly skewed towards an earlier non‐equilibrium. Main conclusions The observed non‐equilibrium pattern supports the refugial hypothesis, suggesting that an ancestral lineage was originally distributed from Spain to Italy, and also occupied offshore islands. This lineage, replaced in Italy, has persisted on the islands owing to their isolation. A comparison of the distribution patterns for genetic and morphometric markers in several species indicates that the situation highlighted for Pyronia may represent a common biogeographic feature for many Mediterranean butterflies.  相似文献   
2.
Aim Community trends were investigated for two small islands and two local mainland butterfly communities within the UK over a period of 20–30 years. Location Hilbre Island off the Wirral Peninsula at 53.33° N, 3.10° W; Lindisfarne, an island off the Northumberland coast at 56.41° N, 1.48° W; Leighton Moss at 54.08° N, 2.26° W; Wyre Forest at 52.23° N, 2.14° W, UK. Methods Butterfly species data were collected on Hilbre and two mainland sites (Leighton Moss and Wyre Forest) from 1983 to 2006, and on Lindisfarne from 1977 to 2006, as part of the National Habitat Survey, the UK Butterfly Monitoring Scheme and ‘Butterflies for the New Millennium Atlas’ recording. Matrices of associations (Sokal and Michener’s matching coefficient SSM; resemblance coefficient) were computed between years and subject to non‐metric multidimensional scaling (NMDS) and Mantel tests. The pattern of extinctions and colonizations at sites were examined, their heterogeneity tested by applying a Friedman test to fractional incidences for the same years. Regression analysis (multiple regression and logit regression) was used to relate butterfly numbers and incidences to climate variables, time and previous records. Results Significant community trends based on population counts and species’ incidences were found for all four sites. There was a significant climatic signal for Hilbre; although this was not apparent for the remaining sites, significant associations occurred between records for a number of species and climatic variables at all sites. Substantial turnover of species on the islands was inversely related to numbers of records for species but not to their conspicuousness to recorders. Main conclusions We argue that time trends are widespread in butterfly communities, even for relatively short periods; they are largely generated by stochastic influences rather than by more substantive factors such as climate change. Potential biases in surveying and recording history are shown to be unlikely. A clear climate signal was found only for the small Hilbre Island, for which there was also evidence for the significant influence of colonization capability of individual source species. We conclude that for many species, small islands will be sinks or pseudosinks and their ‘populations’ vulnerable to small changes in source–sink dynamics.  相似文献   
3.
Monitoring protocols should be designed to maximize the probability of detecting target species with limited resources. Most species are imperfectly detected, hence, they will often be overlooked at sites where they actually occur, resulting in false-negative errors (i.e. false absences). Uncertain detection of target species has profound implications for conservation, but can be dealt with by using adequate survey designs and statistical models. Butterflies often are monitored with repeated, fixed-route transect counts (Pollard walks). Even though this survey method is widely used in temperate regions, its efficiency in terms of detection probability has never been rigorously assessed in part owing to a lack of suitable analysis methods. Here, I use site-occupancy models to explore the seasonal patterns in detection probability of four California butterflies using Pollard walks. In an effort to inventory the butterfly fauna in two natural areas in the eastern foothills of the Santa Cruz mountains (California), I surveyed twelve 250 m long transects weekly for 22 weeks. I estimated the detection probability (the probability of recording a species during a single transect walk, given it is present) of four species. The probability of detecting each species depended mostly on the monitoring week. Average detection probability across the season was 64% for Cercyonis pegala, 56% for Limenitis lorquini, 76% for Euphydryas chalcedona, and 50% for Lycaena arota. Based on the mean detection probability, I then inferred the number of visits necessary to be statistically confident that a given species was indeed absent from a transect where it was not observed (i.e. obtaining a false absence rate <5%). Knowledge of detection probabilities is fundamental to the optimal design of monitoring programs and the interpretation of their results. The methods applied in this study provide an efficient and evidence-based method to optimally allocate butterfly monitoring resources across space (number of transects) and time (number and timing of visits).  相似文献   
4.
Multivariate analyses of 393 butterfly species over 85 geographical areas (R- and Q-data matrices) in Europe and North Africa have produced a consistent pattern of faunal structures (units and regions). Prominent features to emerge are the latitudinal zonation of geographical units and the division of the Mediterranean into western and eastern components; southwards in Europe, endemicity increases whereas faunal structures decrease in spatial dimensions. Central Europe–from the Urals to the British Isles–forms a single large faunal structure (extent unit and region). A model has been constructed to account for Pleistocene evolutionary changes and endemism in European butterflies and for the east-west taxonomic divisions in the extent faunal structure which dominates central Europe. Periodic Pleistocene climatic changes have resulted in cycles of population extinction, isolation, evolution and migration, but the nature and timing of events has depended on the environmental tolerances of species belonging to different faunal units. During Pleistocene glaciations, southern species have been relatively static and more isolated and have evolved independently. By comparison, northern species have been more mobile and have migrated over large distances. Contact and hybrid zones among cosmopolitan species in northern Europe are probably of some antiquity. They result from persistent survival and isolation of refuge populations in the west and east Mediterranean during glacial phases; dispersal from these refuges leads to their regeneration during each interglacial.  相似文献   
5.
A multiple regression analysis was performed upon selected environmental variables for a series of islands in the British Isles, to establish their effects upon the size of the butterfly fauna, measured as he number of species regularly breeding, SB .
So that the data be normally distributed, the regression analyses were performed upon log10 transformed data only, with the data for outliers, mainland Britain and Ireland, the two largest islands, excluded.
Most highly correlated with the number of butterfly species breeding upon an island is the number breeding within a 25 km radius of the nearest point of the mainland, r 2=0.5941, followed by the correlations with the latitude of the mid-point of the island, r 2=0.5541, the number of plant species comprising the island Hora, r 2=0.5225, and the distance separating the island from the mainland, r 2=0.4514.
A partial correlation analysis confirms the importance of the parameters distance separating the island from the mainland, D 1, and the size of the faunal source S F , and rejects the importance of the size of the flora and the latitude of the island. This is further confirmed by the results of a step-wise regression analysis, the two variables D 1 and SF accounting for 66% of the variation of the butterfly fauna.
If an alternative measure of isolation, D 2, which allows for the geographical clumping of islands, is combined with the variable SF , then 69% of the variation of the butterfly fauna is accounted for.  相似文献   
6.
Gradients (isophenes) in modifications of butterfly wing morphology (colour, pattern, size) to the north and west of Britain are shown to correlate closely with contemporary environmental gradients, whereas their alleged formation as infra-specific units in Devensian refugia off western Britain is unsubstantiated. A model is described which explains the transformation in phenotypes in relationship to climate, especially ambient temperatures and radiation levels. In cooler, less predictable summer conditions to the north and west, selection has favoured modifications in adult phenotypes that maintain efficiency in thermoregulation, mate advertisement and predator escape. The form that wing modifications take depends mainly on basking posture (lateral, dorsal-absorption and reflectance), which determines the allocation and interaction of functions on different wing surfaces. It is also dependent on hostplant-habitat structure, which influences thermal stability and the milieu of predators and conspecifics, and other behavioural norms (mate-locating behaviour) and biological attributes (size, robustness, speed and mode of flight, chemical defences) which affect their relationships with predators and conspecifics. The significance of Quaternary palaeoenvironments to phenetic transformations is discussed as is the relevance of the model to the development of phenotypes in arctic endemic butterflies. Differences in phenotypes of butterflies which occupy arctic and temperate montane environments are also predicted by the model.  相似文献   
7.
漳州市蝶类名录初报   总被引:2,自引:1,他引:1  
1997-1999年在福建漳州调查蝶类,共计10科、110属、176种。  相似文献   
8.
对中国12科共32种代表蝶类的ND1基因和16S rRNA 基因进行了序列测定(包括新测30种ND1基因和9种16S rRNA基因)和比较分析, 同时采用邻接法、最大似然法和贝叶斯法构建了12科蝶类的系统发育树, 探讨了其高级分类群的系统发育关系。序列分析的结果显示: 经比对处理后的两个基因总长度为869 bp, 其中保守位点373个, 可变位点496个, 简约信息位点375个; A+T的平均含量为80.2%, 明显高于C+G的平均含量19.8%。分子系统树表明: 蛱蝶科不是单系群; 珍蝶类、斑蝶类和喙蝶类位于蛱蝶科内; 粉蝶科和凤蝶科具有共同祖先。据此建议: 绢蝶科应归入凤蝶科; 蚬蝶科归入灰蝶科; 珍蝶类、斑蝶类和喙蝶类作为蛱蝶科中的亚科, 眼蝶类从蛱蝶科中分离出来独立成科。另外, 环蝶类的系统分类地位还有待于进一步研究。  相似文献   
9.
Aim To relate variation in the migration capacity and colonization ability of island communities to island geography and species island occupancy. Location Islands off mainland Britain and Ireland. Methods Mean migration (transfer) capacity and colonization (establishment) ability (ecological indices), indexed from 12 ecological variables for 56 butterfly species living on 103 islands, were related to species nestedness, island and mainland source geography and indices using linear regression models, RLQ analysis and fourth‐corner analysis. Random creation of faunas from source species, rank correlation and rank regression were used to examine differences between island and source ecological indices, and relationships to island geography. Results Island butterfly faunas are highly nested. The two ecological indices related closely to island occupancy, nestedness rank of species, island richness and geography. The key variables related to migration capacity were island area and isolation; for colonization ability they were area, isolation and longitude. Compared with colonization ability, migration capacity was found to correlate more strongly with island species occupancy and species richness. For island faunas, the means for both ecological indices decreased, and variation increased, with increasing island species richness. Mean colonization ability and migration capacity values were significantly higher for island faunas than for mainland source faunas, but these differences decreased with island latitude. Main conclusions The nested pattern of butterfly species on islands off mainland Britain and Ireland relates strongly to colonization ability but especially to migration capacity. Differences in colonization ability among species are most obvious for large, topographically varied islands. Generalists with abundant multiple resources and greater migration capacity are found on all islands, whereas specialists are restricted to large islands with varied and long‐lived biotopes, and islands close to shore. The inference is that source–sink dynamics dominate butterfly distributions on British and Irish islands; species are capable of dispersing to new areas, but, with the exception of large and northern islands, facilities (resources) for permanent colonization are limited. The pattern of colonization ability and migration capacity is likely to be repeated for mainland areas, where such indices should provide useful independent measures for assessing the conservation status of faunas within spatial units.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号