首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  国内免费   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
The bellbird (Anthornis melanura) is a honeyeater endemic to New Zealand, which uses song to defend breeding territories and/or food resources year round. Both sexes sing and the song structure and singing behavior have not yet been quantified. The number of song types, spectral structure, repertoire size, and singing behavior of male and female bellbirds was investigated for a large island population. Song types differed between the sexes with males singing a number of structurally distinct song types and females producing song types that overlapped in structure. Singing behavior also differed between the sexes; males often sung long series of songs while females sung each song at relatively long and variable intervals. Singing by both sexes occurred year round but the frequency of male and female singing bouts showed contrasting seasonal patterns. The frequency of female singing bouts increased as the breeding season progressed, whereas male singing bouts decreased. In contrast to almost all studied passerines, female bellbirds exhibited significant singing behavior and sung songs of complex structure and variety that parallel male song. These results provide a quantitative foundation for further research of song in bellbirds and in particular the function of female vocal behavior.  相似文献   
2.
In many temperate zone songbird species males only produce song during the breeding season, when plasma testosterone (T) levels are high. Males of some species sing throughout the year, even when T levels are low, indicating a dissociation between high T levels and song rate. Given that few studies have taken advantage of these species, we compare here song traits expressed under high versus low T concentrations and we study the role of testosterone in adult song learning in the European Starling, an open-ended learner in which repertoire size dramatically increases with age. We performed a detailed comparison of song complexity and song rate between fall and spring in 6-year-old intact male European starlings. In parallel, we investigated whether potential seasonal changes were regulated by the gonadally induced increase in plasma T, by comparing seasonal changes in intact and castrated males of the same age (castrated as juveniles during their first fall) and by subsequently experimentally elevating T in half of the castrated males. While song rate and stereotypy did not differ between intacts and castrates or between fall and spring, both groups increased their average song bout length from fall to spring, but only intact males increased their repertoire size, indicating that effects of seasonal T changes differ between song traits. Intact males overall displayed a larger song repertoire and a longer bout length than the castrates, and implantation with T caused a turnover in repertoire composition in castrates. However, as the castrates had never experienced high T levels and yet displayed a markedly higher repertoire size than that of typical yearling males, this suggests that the progressive increase of song repertoire with age in male starlings is not dependent on gonadal T, although it may be T-enhanced.  相似文献   
3.
CD8+ T cell responses are important for recognizing and resolving viral infections. To better understand the selection and hierarchy of virus-specific T cell responses, we compared the T cell receptor (TCR) clonotype in parent and hybrid strains of respiratory syncytial virus-infected mice. K(d)M2(82-90) (SYIGSINNI) in BALB/c and D(b)M(187-195) (NAITNAKII) in C57Bl/6 are both dominant epitopes in parent strains but assume a distinct hierarchy, with K(d)M2(82-90) dominant to D(b)M(187-195) in hybrid CB6F1/J mice. The dominant K(d)M2(82-90) response is relatively public and is restricted primarily to the highly prevalent Vβ13.2 in BALB/c and hybrid mice, whereas D(b)M(187-195) responses in C57BL/6 mice are relatively private and involve multiple Vβ subtypes, some of which are lost in hybrids. A significant frequency of TCR CDR3 sequences in the D(b)M(187-195) response have a distinct "(D/E)WG" motif formed by a limited number of recombination strategies. Modeling of the dominant epitope suggested a flat, featureless structure, but D(b)M(187-195) showed a distinctive structure formed by Lys(7). The data suggest that common recombination events in prevalent Vβ genes may provide a numerical advantage in the T cell response and that distinct epitope structures may impose more limited options for successful TCR selection. Defining how epitope structure is interpreted to inform T cell function will improve the design of future gene-based vaccines.  相似文献   
4.
The genomic organization and expression of genes of the T-cell receptor gamma (TRG) locus are described for mice and humans, but not for species such as rabbits (Oryctolagus cuniculus), in which T cells compose a sizeable proportion of T cells in the periphery. We cloned 200 kb of the rabbit TRG locus and determined the TRGV gene usage in adult and newborn rabbits by RT-PCR. We identified two TRGJ genes, one TRGC gene, and 22 TRGV genes, all of which encoded functional variable regions. One TRGV gene is the unique member of the TRGV2 subgroup, whereas the other genes belong to the TRGV1 subgroup. Evolutionary analyses of TRGV1 genes identified three distinct groups that can be explained by separate duplication events in the rabbit genome. Evidence of gene conversion between TRGV1.1 and TRGV1.6 was observed. Both TRGV1 and TRGV2 subgroup genes were expressed in the spleen, intestine, and appendix of adult rabbits, and the repertoire of TRGV genes expressed in these tissues was similar. In these tissues from newborns, and in skin from adults, only the genes from the TRGV1 subgroup were expressed. Greater TRGV-J junctional diversity was found in tissues from adult compared to newborn rabbits. Our analyses indicate rabbits have a larger germ line encoded TRG repertoire compared with that of mice and humans. In addition, we found TRGV gene usage is alike in most tissues of rabbits similar to that found in humans but in contrast to that found in mice.Electronic SupplementaryMaterial Supplementary material is available for this article at The nucleotide sequence data reported in this article have been submitted to GenBank and are assigned the accession numbers AY748325–AY748348  相似文献   
5.
We have constructed a highly useful phage-displayed human antibody repertoire with limited cloning efforts. Our strategy was to maximize diversity during the first steps of library construction through the use of various lymphoid sources from several donors, inclusion of different immunoglobulin isotypes, and performance of multiple separate amplification reactions with all possible combinations within a complex primer set. The resulting variable region collections were cloned to form a moderate size library, composed by 4.25x10(8) single chain antibody fragments. This repertoire was successfully used to retrieve binders to seven model antigens: six proteins and one 12 aa peptide. Binding affinities reached nanomolar and even subnanomolar range. Sequence diversity and V-gene usage variability among binders were proven. Our approach was not focused on absolute library size, but on a high quality sampling of variable regions from the human antibody repertoire.  相似文献   
6.
Livák F 《Immunogenetics》2003,55(5):307-314
Antigen receptor gene rearrangement is mediated by interactions between the VDJ recombinase and the recombination signal sequences that flank the antigen receptor gene segments. In this report I present phylogenetic analyses that suggest a remarkable evolutionary conservation of the recombination signal sequences flanking some of the orthologous T-cell receptor- locus gene segments between human and mouse. Comparison of published data on the usage of the same gene segments between human and mouse indicates similar conservation in the shape of the primary T-cell receptor- repertoire. I propose that interactions between the recombinase and its cognate recognition sequences play a hitherto underestimated role in the formation of the specific pattern of the primary, combinatorial antigen receptor repertoire and that this pattern appears to be conserved in diverse mammalian species. Generation of a conserved pattern of the primary T-cell receptor repertoire may be critical for efficient selection of immature T lymphocytes.  相似文献   
7.
We have used a bioinformatics approach to evaluate the completeness and functionality of the reported human immunoglobulin heavy-chain IGHD gene repertoire. Using the hidden Markov-model-based iHMMune-align program, 1,080 relatively unmutated heavy-chain sequences were aligned against the reported repertoire. These alignments were compared with alignments to 1,639 more highly mutated sequences. Comparisons of the frequencies of gene utilization in the two databases, and analysis of features of aligned IGHD gene segments, including their length, the frequency with which they appear to mutate, and the frequency with which specific mutations were seen, were used to determine the reliability of alignments to the less commonly seen IGHD genes. Analysis demonstrates that IGHD4-23 and IGHD5-24, which have been reported to be open reading frames of uncertain functionality, are represented in the expressed gene repertoire; however, the functionality of IGHD6-25 must be questioned. Sequence similarities make the unequivocal identification of members of the IGHD1 gene family problematic, although all genes except IGHD1-14*01 appear to be functional. On the other hand, reported allelic variants of IGHD2-2 and of the IGHD3 gene family appear to be nonfunctional, very rare, or nonexistent. Analysis also suggests that the reported repertoire is relatively complete, although one new putative polymorphism (IGHD3-10*p03) was identified. This study therefore confirms a surprising lack of diversity in the available IGHD gene repertoire, and restriction of the germline sequence databases to the functional set described here will substantially improve the accuracy of IGHD gene alignments and therefore the accuracy of analysis of the V–D–J junction.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
8.
Nontemplate (N)-nucleotide addition by the terminal dideoxynucleotidyl transferase (TdT) at the junctions of rearranging V(D)J gene segments greatly contribute to antigen-receptor diversity. TdT has been identified in several vertebrate species, where it is highly conserved. We report here the isolation of two forms of TdT mRNA in an amphibian, the Mexican axolotl. The isoform TdT1 shares all of the conserved structural motifs required for TdT activity and displays an average of 50–58% similarity at the amino acid level with TdT of other species. The second axolotl TdT variant (TdT2) differs from TdT1 by a 57-amino acid deletion located between amino acids 165–222 of TdT1, including the first helix–hairpin–helix DNA-binding motif. During ontogeny, TdT products are first detected in the head of 6-week-old larvae and further in the head and trunk of 8-month-old larvae. These developmental stages correspond to the first detection of RAG1 and antigen-receptor (TCR and IgH) products in axolotl larvae. Our results suggest that in contrast to mammalian development, N diversity occurs early in axolotl development to diversify the primary repertoire. Phylogenetic analyses reveal that TdT and DNA polymerase (Pol ) genes are closely related, and that both enzymes were already present in the common ancestor of jawed vertebrates.This work is dedicated to the memory of Prof. Jacques CharlemagneThe sequences reported in this paper have been deposited in the GenBank database (accession numbers AF039209 and AY248700)  相似文献   
9.
There is a strong need for rapid and reliable epitope mapping methods that can keep pace with the isolation of increasingly larger numbers of mAbs. We describe here the identification of a conformational epitope using Phage-based Representation OF ImmunoLigand Epitope Repertoire (PROFILER), a recently developed high-throughput method based on deep sequencing of antigen-specific lambda phage-displayed libraries. A novel bactericidal monoclonal antibody (mAb 9F11) raised against Neisseria meningitidis adhesin A (NadA), an important component of the Bexsero® anti-meningococcal vaccine, was used to evaluate the technique in comparison with other epitope mapping methods. The PROFILER technology readily identified NadA fragments that were capable of fully recapitulating the reactivity of the entire antigen against mAb 9F11. Further analysis of these fragments using mutagenesis and hydrogen-deuterium exchange mass-spectrometry allowed us to identify the binding site of mAb 9F11 (A250-D274) and an adjoining sequence (V275-H312) that was also required for the full functional reconstitution of the epitope. These data suggest that, by virtue of its ability to detect a great variety of immunoreactive antigen fragments in phage-displayed libraries, the PROFILER technology can rapidly and reliably identify epitope-containing regions and provide, in addition, useful clues for the functional characterization of conformational mAb epitopes.  相似文献   
10.
Abstract

A complex consisting of the EcoRI endonuclease site-specifically bound to spin-labeled DNA 26mers was prepared to provide a model system for studying possible conformational changes resulting from protein binding. EPR was used to monitor the mobility of the spin labels that were strategically placed in position 6, 9, or 11 with respect to the dyad axis of the 26mer. These positions are located within the flanking region on either side of the EcoRI hexamer binding site. This allows the monitoring of potential distal structural changes in the DNA helix caused by protein binding. The spectral line shapes indicate that the spin label closest to the EcoRI endonuclease binding site, i.e., in position 6, is most influenced by the binding event. The EPR data are analyzed according to a model that distinguishes between spectral effects due to a change in the hydrodynamic shape of the complex and those resulting from local variations in the spin-label mobility as characterized by a local order parameter S. S reflecting the motional restriction of the spin-labeled base is 0.20 ± 0.01 for all three oligomers as well as for the two complexes with the label in position 9 or 11, while the position 6 labeled complex yields S=0.25. To further evaluate the origin of the slightly larger EPR effect observed with position 6 labeled material, molecular dynamics (MD) simulations were used to explore the space accessible to the probes in positions 6, 9, and 11. MD results gave similar nitroxide trajectories for all three labeled 26mers in the absence or presence of EcoRI. Thus, the small position 6 effect is attributed to a structural distortion in the major groove of the DNA at this location possibly corresponding to a bend induced by protein binding. The observation that the spectral changes are small indicates the absence of any significant structural disruption being propagated along the helix as a result of protein binding. Also, the fact that the line shape of the 26mers did not change as expected from hydrodynamic theory in view of the significant increase in molecular volume upon protein binding suggests that there are additional relaxation processes involving the protein and nucleic acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号