首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   4篇
  国内免费   1篇
  2022年   2篇
  2021年   4篇
  2020年   5篇
  2019年   6篇
  2018年   4篇
  2016年   5篇
  2015年   5篇
  2014年   12篇
  2013年   3篇
  2012年   6篇
  2011年   8篇
  2010年   7篇
  2009年   2篇
  2008年   10篇
  2007年   6篇
  2006年   3篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1990年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
1.
The fear induced by predators on their prey is well known to cause behavioural adjustments by prey that can ripple through food webs. Little is known, however, about the analogous impacts of humans as perceived top predators on the foraging behaviour of carnivores. Here, we investigate the influence of human-induced fear on puma foraging behaviour using location and prey consumption data from 30 tagged individuals living along a gradient of human development. We observed strong behavioural responses by female pumas to human development, whereby their fidelity to kill sites and overall consumption time of prey declined with increasing housing density by 36 and 42%, respectively. Females responded to this decline in prey consumption time by increasing the number of deer they killed in high housing density areas by 36% over what they killed in areas with little residential development. The loss of food from declines in prey consumption time paired with increases in energetic costs associated with killing more prey may have consequences for puma populations, particularly with regard to reproductive success. In addition, greater carcass availability is likely to alter community dynamics by augmenting food resources for scavengers. In light of the extensive and growing impact of habitat modification, our study emphasizes that knowledge of the indirect effects of human activity on animal behaviour is a necessary component in understanding anthropogenic impacts on community dynamics and food web function.  相似文献   
2.
Emerging diseases and expanding carnivore populations may have profound implications for ungulate harvest management and population regulation. To better understand effects of chronic wasting disease (CWD) and cougar (Puma concolor) predation, we studied mortality and recruitment of elk (Cervus elaphus) at Wind Cave National Park (WICA) during 2005–2009. We marked 202 elk (83 subadult M and 119 subadult and ad F) with Global Positioning System (GPS) collars, observed 28 deaths during 74,220 days of monitoring, and investigated 42 additional deaths of unmarked elk found dead. Survival rates were similar for males and females and averaged 0.863 (SE = 0.025) annually. Leading causes of mortality included hunting (0.065, SE = 0.019), CWD (0.034, SE = 0.012), and cougar predation (0.029, SE = 0.012). Marked elk killed by hunters and cougars typically were in good physical condition and not infected with CWD. Effects of mortality on population growth were exacerbated by low rates of pregnancy (subadults = 9.5%, SE = 6.6%; ad = 76.9%, SE = 4.2%) and perinatal survival (0.49, SE = 0.085 from 1 Feb to 1 Sep). Chronic wasting disease, increased predation, and reduced recruitment reduced the rate of increase for elk at WICA to approximately λ = 1.00 (SE = 0.027) during the past decade. Lower rates of increase are mitigating effects of elk on park vegetation, other wildlife, and neighboring lands and will facilitate population control, but may reduce opportunities for elk hunting outside the park. © 2011 The Wildlife Society  相似文献   
3.
Researchers consider predation rates by terrestrial animals to be lower in the case of arboreal primates, particularly among large-bodied species. We recorded the consumption of black-and-gold howlers (Alouatta caraya) by cougars (Puma concolor) as evidence of predation on an island of the upper Paraná River. We collected and processed fecal samples of the felid in 2004 and 2005. We identified items in the laboratory by comparison with museum specimens. We considered each species in a fecal sample as a single occurrence. Based on analysis of the cuticle scale pattern, we identified the felid as cougar. Howlers occurred in 4 out of the 8 fecal samples (40% of the occurrences). In addition to howlers, we also recorded 5 occurrences of agouti (Dasyprocta azarae; 50%) and a small unidentified sigmodontine rodent (10%). The abundance of howlers and the low forest canopy in a successional vegetation might have facilitated the predation of the large primates by a primarily terrestrial predator. The versatility of cougars is corroborated by the consumption of prey species that were abundant in the region and that were available in different forest strata, such as howlers and agoutis.  相似文献   
4.
5.
Interactions among Bcl-2 family proteins play critical roles in cellular life and death decisions. Previous studies have established the BH3-only proteins Bim, tBid, and Noxa as “direct activators” that are able to directly initiate the oligomerization and activation of Bak and/or Bax. Earlier studies of Puma have yielded equivocal results, with some concluding that it also acts as a direct activator and other studies suggesting that it acts solely as a sensitizer BH3-only protein. In the present study we examined the interaction of Puma BH3 domain or full-length protein with Bak by surface plasmon resonance, assessed Bak oligomerization status by cross-linking followed by immunoblotting, evaluated the ability of the Puma BH3 domain to induce Bak-mediated permeabilization of liposomes and mitochondria, and determined the effect of wild type and mutant Puma on cell viability in a variety of cellular contexts. Results of this analysis demonstrate high affinity (KD = 26 ± 5 nm) binding of the Puma BH3 domain to purified Bak ex vivo, leading to Bak homo-oligomerization and membrane permeabilization. Mutations in Puma that inhibit (L141E/M144E/L148E) or enhance (M144I/A145G) Puma BH3 binding to Bak also produce corresponding alterations in Bak oligomerization, Bak-mediated membrane permeabilization and, in a cellular context, Bak-mediated killing. Collectively, these results provide strong evidence that Puma, like Bim, Noxa, and tBid, is able to act as a direct Bak activator.  相似文献   
6.

Aim

There is enormous interest in applying connectivity modelling to resistance surfaces for identifying corridors for conservation action. However, the multiple analytical approaches used to estimate resistance surfaces and predict connectivity across resistance surfaces have not been rigorously compared, and it is unclear what methods provide the best inferences about population connectivity. Using a large empirical data set on puma (Puma concolor), we are the first to compare several of the most common approaches for estimating resistance and modelling connectivity and validate them with dispersal data.

Location

Southern California, USA.

Methods

We estimate resistance using presence‐only data, GPS telemetry data from puma home ranges and genetic data using a variety of analytical methods. We model connectivity with cost distance and circuit theory algorithms. We then measure the ability of each data type and connectivity algorithm to capture GPS telemetry points of dispersing pumas.

Results

We found that resource selection functions based on GPS telemetry points and paths outperformed species distribution models when applied using cost distance connectivity algorithms. Point and path selection functions were not statistically different in their performance, but point selection functions were more sensitive to the transformation used to convert relative probability of use to resistance. Point and path selection functions and landscape genetics outperformed other methods when applied with cost distance; no methods outperformed one another with circuit theory.

Main conclusions

We conclude that path or point selection functions, or landscape genetic models, should be used to estimate landscape resistance for wildlife. In cases where resource limitations prohibit the collection of GPS collar or genetic data, our results suggest that species distribution models, while weaker, may still be sufficient for resistance estimation. We recommend the use of cost distance‐based approaches, such as least‐cost corridors and resistant kernels, for estimating connectivity and identifying functional corridors for terrestrial wildlife.
  相似文献   
7.
A taphonomic study of the carcass of an adult guanaco (Lama guanicoe) recently killed and consumed by one or more pumas (Puma concolor) in the Laguna del Diamante reserve (Mendoza province, Argentina) is exposed, and the case is discussed in the light of the available taphonomic information on this agent in America. The carcass was dispersed along more than 30 m and basically devoid of soft tissues. Thirty-four percent of the bones presented tooth modifications, removal of bone tissue and edge damage, mostly attributable to pumas. Some of these modifications are considerable, as in the case of the skull. The results of the study suggest that bone modifications are intense as compared to other taphonomic studies on this felid. The implications of this are discussed, and the conclusion is reached that more knowledge is needed on the range of variation in puma taphonomic action and the conditions under which such variation occurs.  相似文献   
8.
Natural and anthropogenic boundaries have been shown to affect population dynamics and population structure for many species with movement patterns at the landscape level. Understanding population boundaries and movement rates in the field for species that are cryptic and occur at low densities is often extremely difficult and logistically prohibitive; however genetic techniques may offer insights that have previously been unattainable. We analysed thirteen microsatellite loci for 739 mountain lions (Puma concolor) using muscle tissue samples from individuals in the Great Basin throughout Nevada and the Sierra Nevada mountain range to test the hypothesis that heterogeneous hunting pressure results in source‐sink dynamics at the landscape scale. We used a combination of non‐spatial and spatial model‐based Bayesian clustering methods to identify genetic populations. We then used a recently developed Bayesian multilocus genotyping method to estimate asymmetrical rates of contemporary movement between those subpopulations and to identify source and sink populations. We identified two populations at the highest level of genetic structuring with a total of five subpopulations in the Great Basin of Nevada and the Sierra Nevada range. Our results suggest that source‐sink dynamics occur at landscape scales for wide‐ranging species, such as mountain lions, and that source populations may be those that are under relatively less hunting pressure and that occupy refugia.  相似文献   
9.
Understanding coexistence between sympatric felines with similar body sizes, such as jaguars Panthera onca and pumas Puma concolor , requires knowledge of the way these predators consume and partition food resources. Yet the importance of livestock predation on jaguar and puma coexistence is poorly known. I investigated food habits and patterns of livestock depredation of jaguar and pumas in the Iguaçu National Park (INP) in southern Brazil. From 1997 to 2001, I collected scats opportunistically on trails and roads in INP and visited ranches on the border of INP. I found that jaguars relied mostly on large and medium-sized wild prey species, while pumas concentrated on medium-sized prey species. Livestock was the fifth most frequent prey found in jaguar scats but the most important one in terms of biomass consumed. Jaguar and puma diets differed significantly when all prey items were compared and also when livestock was excluded from the jaguar diet. Jaguar predation on livestock was considerably higher than predation by pumas. However, predation was not substantial relative to availability of livestock, and cattle likely constitute an alternative source of prey for jaguars. Degree of diet overlap between jaguar and puma in INP suggests that coexistence was likely driven by exploitative competition through some degree of food partitioning. My results highlight the importance of more actions toward increasing numbers of large ungulates to preserve the population of jaguars in INP.  相似文献   
10.
ABSTRACT The jaguar (Panthera onca) and puma (Puma concolor) are the largest felids of the American Continent and live in sympatry along most of their distribution. Their tracks are frequently used for research and management purposes, but tracks are difficult to distinguish from each other and can be confused with those of big canids. We used tracks from pumas, jaguars, large dogs, and maned wolves (Chrysocyon brachyurus) to evaluate traditional qualitative and quantitative identification methods and to elaborate multivariate methods to differentiate big canids versus big felids and puma versus jaguar tracks (n = 167 tracks from 18 zoos). We tested accuracy of qualitative classification through an identification exercise with field-experienced volunteers. Qualitative methods were useful but there was high variability in accuracy of track identification. Most of the traditional quantitative methods showed an elevated percentage of misclassified tracks (≥20%). We used stepwise discriminant function analysis to develop 3 discriminant models: 1 for big canid versus big felid track identification and 2 alternative models for jaguar versus puma track differentiation using 1) best discriminant variables, and 2) size-independent variables. These models had high classification performance, with <10% of error in the validation procedures. We used simpler discriminant models in the elaboration of identification keys to facilitate track classification process. We developed an accurate method for track identification, capable of distinguishing between big felids (puma and jaguar) and large canids (dog and maned wolf) tracks and between jaguar and puma tracks. Application of our method will allow a more reliable use of tracks in puma and jaguar research and it will help managers using tracks as indicators of these felids' presence for conservation or management purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号