首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   8篇
  2023年   3篇
  2022年   2篇
  2021年   1篇
  2020年   5篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   6篇
  2013年   16篇
  2012年   6篇
  2011年   7篇
  2010年   3篇
  2009年   8篇
  2008年   11篇
  2007年   20篇
  2006年   15篇
  2005年   15篇
  2004年   9篇
  2003年   7篇
  2002年   9篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1993年   2篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1977年   3篇
  1976年   1篇
排序方式: 共有205条查询结果,搜索用时 16 毫秒
1.
《朊病毒》2013,7(3-4):234-244
ABSTRACT

One of the major medical challenges of the twenty-first century is the treatment of incurable and fatal neurodegenerative disorders caused by misfolded prion proteins. Since the discovery of these diseases a number of studies have been conducted to identify small molecules for their treatment, however to date no curative treatment is available. These studies can be highly expensive and time consuming, but more recent experimental approaches indicate a significant application for yeast prions in these studies. We therefore used yeast prions to optimize previous high-throughput methods for the cheaper, easier and more rapid screening of natural extracts. Through this approach we aimed to identify natural yeast-prion inhibitors that could be useful in the development of novel treatment strategies for neurodegenerative disorders. We screened 500 marine invertebrate extracts from temperate waters in Australia allowing the identification of yeast-prion inhibiting extracts. Through the bioassay-driven chemical investigation of an active Suberites sponge extract, a group of bromotyrosine derivatives were identified as potent yeast-prion inhibitors. This study outlines the importance of natural products and yeast prions as a first-stage screen for the identification of new chemically diverse and bioactive compounds.  相似文献   
2.
The sterol content of the marine sponge Crambe crambe has been determined. The major components of the mixture are cholest-7-en3β-ol, 24-methylcholesta-7,22-dien-3β-ol and cholesta-7,22-dien-3β-ol. Significative quantities of the rare 4α-methyl-5α-cholest-8-en3β-ol are also present.  相似文献   
3.
The taxonomic validity, present distribution, and specific threats to the existence of the freshwater sponge,Spongilla sponginosa Penney were investigated. This species, reported only from the type locality, Week's Pond, Sumter County, South Carolina, has apparently been extirpated due to highly acidic pH levels in the pond water. Examination of holotype materials indicate some question of the validity of S. sponginosa as a distinct species.  相似文献   
4.
Recent pharetronid sponges were regarded as relict species in tropical and subtropical waters, inhabiting cryptic habitats on coral reefs and in caves. More recent findings of a new species of the genus Plectroninia off northern Norway, with an inner fused skeleton have changed that view. Recent investigations on the sponge fauna of the “Propeller Mound”, northern Porcupine Seabight, focusing on sponges growing on the azooxanthellate cold-water coral Lophelia pertusa (Linné 1758) and Madrepora oculata Linné 1758, established the presence of a species of Plectroninia new to science. Its status as a common species within this deep-water coral habitat and the general status of the genus Plectroninia are discussed.  相似文献   
5.
Glass sponges of the class Hexactinellida are a group of the most ancient multicellular animals, whose fossil remnants from the early Proterozoic have been registered. In order to demineralize the skeletal structures of the glass sponge Hyalonema sieboldi, we have used for the first time a strategy of slow leaching of the silicon-bearing component, based on the usage of alkaline solutions of sodium hydroxide, sodium dodecyl sulfate, and an anionic biosurfactant of a rhamnolipid nature. The obtained data unequivocally corroborate the presence of a fibrillar protein matrix functioning as a basis for silicon biomineralization in the basal spicules of H. sieboldi. Also, it has been found for the first time that the protein matrix is constructed of a collagenous protein. The technical approach proposed here might appear important for the study of the structural organization of skeletons in other silicon-bearing animals and, in an applied aspect, to work out new biomaterials for implantology and biocomposites, in order to use the latter as bioactive additives.  相似文献   
6.
Reaggrcgation of dissociated cells of marine sponges, resulting in reformation of functional sponges, is a calcium-dependent process mediated by large, proteoglycan-like molecules termed aggregation factors (AF). During aggregation, species-specific sorting of cells is often observed. We purified and characterized AFs from three different sponge species and investigated their role in species-specific aggregation using novel approaches. The calcium-dependent association between purified AFs is species-specific in most combinations, as was shown in overlay assays and bead-sorting assays with AFs immobilized onto colored beads. Species-specific interactions of living cells and AF-beads resulted in incorporation of only homospecific AF-beads into reforming cell aggregates. Sequences from peptides obtained from the AF core proteins could all be aligned to the sequence of one species, the Microciona prolifera AFp3 core protein. In contrast to this similarity, major species-specific differences were seen in carbohydrate composition and in the response of AFs to specific carbohydrate-recognizing antibodies. In summary, our data point to a prominent role for the calcium-dependent association of AFs in recognition processes during aggregation. As this association of AFs occurs via carbohydrate -carbohydrate interactions, we speculate that the specificity of those interactions may be fundamental to recognition mechanisms required for regeneration of individuals from dissociated cells and for rejection of foreign material by sponge individuals.  相似文献   
7.
Sponges are among the most species‐rich and ecologically important taxa on coral reefs, yet documenting their diversity is difficult due to the simplicity and plasticity of their morphological characters. Genetic attempts to identify species are hampered by the slow rate of mitochondrial sequence evolution characteristic of sponges and some other basal metazoans. Here we determine species boundaries of the Caribbean coral reef sponge genus Callyspongia using a multilocus, model‐based approach. Based on sequence data from one mitochondrial (COI), one ribosomal (28S), and two single‐copy nuclear protein‐coding genes, we found evolutionarily distinct lineages were not concordant with current species designations in Callyspongia. While C. fallax, C. tenerrima, and C. plicifera were reciprocally monophyletic, four taxa with different morphologies (C. armigera, C. longissima, C. eschrichtii, and C. vaginalis) formed a monophyletic group and genetic distances among these taxa overlapped distances within them. A model‐based method of species delimitation supported collapsing these four into a single evolutionary lineage. Variation in spicule size among these four taxa was partitioned geographically, not by current species designations, indicating that in Callyspongia, these key taxonomic characters are poor indicators of genetic differentiation. Taken together, our results suggest a complex relationship between morphology and species boundaries in sponges.  相似文献   
8.
Abstract. Clionaids are excavating sponges, which live in and grow into calcareous substrates. We studied the sexual reproductive cycles of two clionaid sponges coexisting in a Mediterranean coastal basin (Porto Cesareo, Italy), Cliona viridis and Cliona celata, by analyzing monthly tissue samples of ten specimens of each species collected over a 2‐year period. From May to June of the second study year, supplementary samples were taken weekly. Up to 90% of the specimens of C. viridis and 70% of those of C. celata sampled were reproductive during the study. In both species, but particularly in C. viridis, reproductive investment, measured as the percentage of sponge tissue occupied by gametes, was high. Oocytes were present almost year‐round in both species, except for a 1–4‐month period after zygote release. In contrast, spermatogenesis occurred most frequently in May in both species, when (May–June) oocytes reached their greatest diameters. Cliona viridis and C. celata are hermaphrodites, with oocytes and spermatic cysts coexisting in 10% of the studied individuals in the first year of the study, and in 30% during the second. No developing embryos or larvae were incubated in the sponge tissues, and fertilization was not observed. Temperature may play a role in triggering some important phases of the reproduction of these Cliona, such as oocyte maturation and spermatogenesis, which occurred when water temperature increased from 17°C to 25°C between May and June.  相似文献   
9.
The two sponge classes, Hexactinellida and Demospongiae, comprise a skeleton that is composed of siliceous skeletal elements (spicules). Spicule growth proceeds by appositional layering of lamellae that consist of silica nanoparticles, which are synthesized via the sponge-specific enzyme silicatein. While in demosponges during maturation the lamellae consolidate to a solid rod, the lamellar organization of hexactinellid spicules largely persists. However, the innermost lamellae, near the spicule core, can also fuse to a solid axial cylinder. Similar to the fusion of siliceous nanoparticles and lamella, in several hexactinellid species individual spicules unify during sintering-like processes. Here, we study the different stages of a process that we termed bio-sintering, within the giant basal spicule (GBS) of Monorhaphis chuni. During this study, a major GBS protein component (27 kDa) was isolated and analyzed by MALDI-TOF-MS. The sequences were used to isolate and clone the encoding cDNA via degenerate primer PCR. Bioinformatic analyses revealed a significant sequence homology to silicatein. In addition, the native GBS protein was able to mediate bio-silica synthesis in vitro. We conclude that the syntheses of bio-silica in M. chuni, and the subsequent fusion of nanoparticles to lamellae, and finally to spicules, are enzymatically-driven by a silicatein-like protein. In addition, evidence is now presented that in hexactinellids those fusions involve sintering-like processes.  相似文献   
10.
The Sula Reef Complex, Norwegian shelf   总被引:5,自引:0,他引:5  
Summary Cool-water carbonates in the aphotic zone of deep shelf and continental margin settings in the Northeast Atlantic are produced by the deep-water coral reefs withLophelia pertusa as the major framework builder. Through a compilation of side scan sonar, airgun and manned submersible surveys from several cruises to the mid-Norwegian Sula Reef Complex (SRC), the facies pattern and zonation of one of the largest deep-water reefs in the Northeast Atlantic is described in relation to the overall seabed topography. The late glacial to early postglacial iceberg scour on the crest and shoulder of the Sula Ridge provides settling ground for the scleractinian corals already in the early Holocene. Since then coral growth continues until today but was supposed to be disturbed by an environmental hazard, the so-called second Storegga event. The distinct distribution pattern of individualLophelia reefs on the Sula Ridge has stimulated a discussion on intrinsic environmental controls such as the bentho-pelagic coupling and the alternative hydrocarbon-based nutrition hypothesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号