首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   2篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2000年   1篇
  1999年   3篇
  1996年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
于福同  张福锁 《遗传学报》1999,26(5):552-557
采用室内控制生长条件的营养液培养技术,通过检测缺铁条件下20个中国春的Hope染色体代换系及其亲本中国春和Hope小麦植物铁载本分泌的动态变化规律以及植物铁载体分泌高峰期内5次测定值的汇总资料,对六倍体小麦PS分泌基因进行染色体定位。PS分泌率通过根分泌物对新形成的Fe(OH)3的活化能力进行测定,在缺铁症出现时每隔2,3天测定1次,随着缺铁失绿症严重程度的增加,PS分泌率呈现迅速增高再逐渐降低的  相似文献   
2.
Aoyagi Y 《Phytochemistry》2006,67(6):618-621
A compound that inhibited angiotensin-I converting enzyme (ACE) activity was isolated from buckwheat powder. This compound is thought to be the hydroxy derivative of nicotianamine and its chemical structure is 2'-hydroxynicotianamine. This compound showed a very high inhibitory activity toward ACE, and the IC(50) was 0.08 microM. Only this hydroxy analog was found in buckwheat powder, at about 30 mg/100g, and no nicotianamine was detected. However, nicotianamine was detected in the buckwheat plant body. 2'-hydroxynicotianamine was also found in other polygonaceous plants.  相似文献   
3.
根表铁氧化物胶膜对水稻吸收Zn的影响   总被引:18,自引:1,他引:17  
采用营养液培养方法研究了水稻根表形成的铁氧化物胶膜对水稻吸收Zn的影响.结果表明,在有Fe2+的嫌气环境中,由于根际氧化作用水稻根表会形成红色的铁氧化物胶膜,根表的铁氧化物胶膜影响水稻对Zn的吸收.铁膜数量较少时,由于对Zn的富集作用有限,其对水稻Zn的吸收虽有促进作用,但不明显.随着根表铁膜数量的增加,这种促进作用也相应增加,并且在铁膜数量增加到一定值时,对水稻吸收Zn的促进作用达到最大.而后,随着铁膜数量的进一步增加,铁膜反而阻碍水稻对Zn的吸收,成为水稻吸收Zn的障碍层.在此过程中,水稻的根分泌物,特别是其中的植物铁载体对覆有铁膜水稻根系吸收Zn有促进作用.这种促进作用随铁膜数量的增加而逐渐减弱.因此,根表铁氧化物胶膜对水稻吸收Zn并不总是起促进作用,其作用的方向和程度取决于铁膜的数量.  相似文献   
4.
Structural and thermodynamic properties of biologically important metal-mugineic acid complexes have been studied from the theoretical side in order to understand the metal-chelating mechanism of phytosiderophore mugineic acid at an atomic level. Density-functional theory methods combined with the polarizable continuum model (PCM) have been employed to obtain free energies of complex formation and redox potentials for metal-mugineic acid complexes in solution. It has been found that the free energies of complex formation calculated at the B3LYP/PCM level of theory are in moderate agreement with available experimental results. The inclusion of explicit water molecules interacting with the carboxylic groups in deprotonated mugineic acid through strong hydrogen-bonds is found to further improve the calculated free energies of complex formation.  相似文献   
5.
To gain a better understanding of the mechanisms of improvement of iron nutrition of peanut (Arachis hypogaea L.) intercropped with maize (Zea mays L.) in calcareous soil, both greenhouse and field experiments were conducted to investigate the rhizosphere (phytosiderophores) effects from maize, barley, oats and wheat with different phytosiderophores release rates on iron nutrition and other micronutrients in calcareous soil. Six cropping treatments were examined in a greenhouse experiment: peanut grown separately in monoculture, normal peanut/maize intercropping (two genotypes: Danyu13, Zhongdan12), peanut/barley intercropping, peanut/oats intercropping, and peanut/wheat intercropping. Additionally, we investigated in a field experiment the same five cropping systems as the greenhouse experiment (maize/peanut intercropping not including Zhongdan12). Our results show that the chlorophyll and active Fe concentrations in the young leaves of the peanut in the intercropping system with different gramineous species were much higher than those of the peanut in monoculture. In greenhouse conditions, the Fe concentration in the shoots of peanut plants grown in the intercropping systems of two maize genotypes separately were 1.40–1.44, 1.47–1.64 and 1.15–1.42 times higher respectively than those of peanut plants grown in monocropping at 55, 60 and 70 days. In particular, the Fe concentration in shoots of peanut plants grown in the intercropping systems of barley, oats and wheat were not only higher than those in monocropping but also higher than those in peanut intercropped cropping with maize. In the field, the concentration of Fe in shoot of intercropped peanut plants in rows 1–3 from gramineous species were significantly higher than in monocropping at the flowering stage. Simultaneously with iron nutrition variation in peanut, Zn and Cu concentrations of intercropped grown peanut increased significantly compared to those in monocropping in the greenhouse experiment, and different intercropping treatments generally increased the Zn and Cu content in the shoot of peanut in the field. Systemic mechanisms may be involved in adaptation to nutrient stresses at the whole plant level. The study suggests that a reasonable intercropping system of nutrient efficient species should be considered to prevent or mitigate iron and zinc deficiency of plants in agricultural practice.  相似文献   
6.
7.
Summary We have investigated the mugineicacid-Fe transport activity of Fe-deficient barley roots, using the multi-compartment transport box system. The roots maintained Fe transport activity for 20 h after excision. The following results were obtained. (1) In Fe-deficient roots, mugineic acid addition enhanced the transport of Fe by 32.2 times over that of the control (with FeC13 addition). (2) The mugineic-acid-55Fe transport activity of Fe-deficient roots was 18.4-fold higher than that of the Fe-sufficient roots. (3) The mugineic-acid-55Fe transport activity was decreased (7.13% based on the control) by treatment with 5 M carbonylcyanidem-chlorophenyl hydrazone (CCCP). Pretreatment with 0.1 mM dicyclohexyl carbodiimide (DCCD) lowered the transport activity (10.7% based on the control) and 1 mMN-ethylmaleimide (NEM) pretreatment reduced the transport activity to a value equivalent to 2.41% of that in the control. It is concluded that mugineicacid-Fe transporter is induced in its activity and/or amount by Fe-deficiency treatment and has an SH residue at its active site, and that the transporter needs the proton motive force produced by ATPase. We detected three polypeptides (14, 28 and 40 kDa) in the root plasma membrane that were induced under Fe-deficiency treatment.Abbreviations p-APMSF (p-amidinophenyl)methanesulfonyl fluoride hydrochloride - CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD dicyclohexylcabodiimide - DMSO dimethyl sulfoxide - MA mugineic acid - NEM N-ethylmaleimide  相似文献   
8.
NADH:nitrate reductase (EC 1.6.6.1) from squash (Cucurbita maxima Duch., cv. Buttercup) can catalyze the reduction of a ferriphytosiderophore from barley (Hordeum vulgare L. cv. Europa). Maximal activity occurs at pH 6, with an apparentK m andV max of 76 M and 21 nmol·min-1·(mg protein)-1, respectively. The ferriphytosiderophore strongly inhibits nitrate reduction catalyzed by nitrate reductase at the optimal pH for nitrate reduction, i.e. 7.5. On the contrary, nitrate is a poor inhibitor of ferriphytosiderophore reduction catalyzed by nitrate reductase at the optimal pH for this reaction, pH 6.0. Thus, squash has the potential to assimilate the iron from a ferriphytosiderophore synthesized by another plant.  相似文献   
9.
Summary Seven kinds of suspension cell cultures from five species ofNicotiana were screened for the occurrence of nicotianamine. Nicotianamine was detected in the cultured cells ofN. megalosiphon andN. plumbaginifolia.l-[l-14C]Methionine, which is the precursor of the mugineic-acid-family phytosiderophores and nicotianamine in barley plants, was incorporated into nicotianamine by the cultured cells ofN. megalosiphon both in vivo and in vitro. The advantage of the cultured tobacco cells for the study of the biosynthesis of nicotianamine and the mugineic-acid-family phytosiderophores is discussed.  相似文献   
10.
There is limited information concerning the effect of salinity on phytosiderophores exudation from wheat roots. The aim of this hydroponic experiment was to investigate the effect of salinity on phytosiderophore release by roots of three bread wheat genotypes differing in Zn efficiency (Triticum aestivum L. cvs. Rushan, Kavir, and Cross) under Zn deficiency conditions. Wheat seedlings were transferred to Zn-free nutrient solutions and exposed to three salinity levels (0, 60, and 120 mM NaCl). The results indicated that Cross and Rushan genotypes exuded more phytosiderophore than did the Kavir genotype. Our findings suggest that the adaptive capacity of Zn-efficient ‘Cross’ and ‘Rushan’ wheat genotypes to Zn deficiency is due partly to the higher amounts of phytosiderophore release. Only 15 days of Zn deficiency stress was sufficient to distinguish between Zn-efficient (Rushan and Cross) and Zn-inefficient (Kavir) genotypes, with the former genotypes exuding more phytosiderophore than the latter. Higher phytosiderophore exudation under Zn deficiency conditions was accompanied by greater Fe transport from root to shoot. The maximum amount of phytosiderophore was exuded at the third week in ‘Cross’ and at the fourth week in ‘Kavir’ and ‘Rushan’. For all three wheat genotypes, salinity stress resulted in higher amounts of phytosiderophore exuded by the roots. In general, for ‘Kavir’, the largest amount of phytosiderophore was exuded from the roots at the highest salinity level (120 mM NaCl), while for ‘Cross’ and ‘Rushan’, no significant difference was found in phytosiderophore exudation between the 60 and 120 mM NaCl treatments. More investigation is needed to fully understand the physiology of elevated phytosiderophore release by Zn-deficient wheat plants under salinity conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号