首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   3篇
  国内免费   3篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2019年   3篇
  2018年   3篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   12篇
  2012年   6篇
  2011年   6篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  1999年   1篇
  1991年   1篇
  1985年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
1.
Objective: Long non-coding RNAs (lncRNAs) recently have been identified as influential indicators in a variety of malignancies. The aim of the present study was to identify a functional lncRNA LINC00488 and its effects on thyroid cancer in the view of cell proliferation and apoptosis.Methods: In order to evaluate the effects of LINC00488 on the cellular process of thyroid cancer, we performed a series of in vitro experiments, including cell counting kit-8 (CCK-8) assay, EdU (5-ethynyl-2′-deoxyuridine) assay, flow cytometry, transwell chamber assay, Western blot and RT-qPCR. The target gene of LINC00488 was then identified by bioinformatics analysis (DIANA and TargetScan). Finally, a series of rescue experiments was conducted to validate the effect of LINC00488 and its target genes on proliferation, migration, invasion and apoptosis of thyroid cancer.Results: Our findings revealed that LINC00488 was highly expressed in thyroid cancer cell lines (BCPAP, BHP5-16, TPC-1 and CGTH-W3) and promoted the proliferation, migration and invasion, while inhibited the apoptosis of thyroid cancer cells (BCPAP and TPC-1). The results of bioinformatics analysis and dual luciferase reporter gene assay showed that LINC00488 could directly bind to miR-376a-3p and down-regulated the expression level of miR-376a-3p. In addition, Paraoxonase-2 (PON2) was a target gene of miR-376a-3p and negatively regulated by miR-376a-3p. Rescue experiment indicated that LINC00488 might enhance PON2 expression by sponging miR-376a-3p in thyroid cancer.Conclusion: Taken together, our study revealed that lncRNA LINC00488 acted as an oncogenic gene in the progression of thyroid cancer via regulating miR-376a-3p/PON2 axis, which indicated that LINC00488-miR-376a-3p-PON2 axis could serve as novel biomarkers or potential targets for the treatment of thyroid cancer.  相似文献   
2.
Paraoxonase 1 (PON1) protects the oxidative modification of low-density lipoprotein (LDL) and is a major anti-atherosclerotic protein component of high-density lipoprotein (HDL). Quercetin, a ubiquitous plant flavonoid, has been shown to have a number of bioactivities and may offer a variety of potential therapeutic uses. We explored the roles of quercetin in the regulation of PON1 expression, serum and liver activity and protective capacity of HDL against LDL oxidation in rats. Compared to the pair-fed control group, feeding quercetin (10 mg/L) in the liquid diet for 4 weeks increased (a) hepatic expression of PON1 by 35% (p < 0.01), (b) serum and liver PON1 activities by 29% (p < 0.05) and 57% (p < 0.01), respectively, and (c) serum homocysteine thiolactonase (HCTL) activity by 23% (p < 0.05). Correspondingly, the lag time of low-density lipoprotein (LDL) oxidation was increased by >3-fold (p < 0.001) with plasma HDL from quercetin-fed group compared to the HDL from control group. Our data suggest that quercetin has antiatherogenic effect by up regulating PON1 gene expression and its protective capacity against LDL oxidation.  相似文献   
3.
To examine the effect of phospholipids on PON1 activities, purified PON1 was exposed to phospholipids prior to the determination of arylesterase and paraoxonase activities. Phosphatidylcholines with saturated acyl chains (C10-C16) showed a stimulation of both activities, chain length-dependent, with a greater stimulation of arylesterase activity, suggesting the implication of lipid bilayer in the stimulatory action. Such a preferable stimulation of arylesterase activity was more remarkable with phosphatidylcholines with polyunsaturated acyl chains or oxidized chains at sn-2 position, implying that the packing degree of acyl chain may be also important for the preferable stimulation of arylesterase activity. Separately, 1-palmitoyl-lysoPC also stimulated arylesterase activity preferably, indicating that the micellar formation of lipids around PON1 also contributes to the stimulatory action. Additionally, phosphatidylglycerols slightly enhanced arylesterase activity, but not paraoxonase activity. In contrast, phosphatidylserine and phosphatidic acid (≥0.1 mM) inhibited both activities Further, such a preferable stimulation of arylesterase activity by phosphatidylcholines was also reproduced with VLDL-bound PON1, although to a less extent. These data indicate that phosphatidylcholines with polyunsaturated acyl chains or oxidized chain, or lysophosphatidylcholine cause a preferable stimulation of arylesterase activity, thereby contributing to the decrease in the ratio of paraoxonase activity to arylesterase activity.  相似文献   
4.
Previously we reported that in sheep dippers exposed to organophosphates the frequency of paraoxonase (PON1) polymorphisms differed between those with or without self-reported ill health. We have now examined whether polymorphisms in other genes involved in xenobiotic metabolism alter disease risk in this population. There were elevated but non-significant risks associated with the CYP2D6 WT genotype (odds ratio (OR) 1.47, 95% CI 0.83–2.60), or a GSTP1*B or *C allele (OR 1.37, 95% CI 0.88–2.01) or being GSTM1*2/GSTT1*2 homozygous (OR 1.61, 95% CI 0.74–3.48). Similar results were generally obtained after the exclusion of subjects to obtain a more homogenous case-referent population: for double null GSTM1 and GSTT1 homozygotes the OR was 2.06 (95% CI 0.85–2.04). In those also likely to have been exposed to diazinon, risks associated with a GSTP1*B or *C allele (OR 1.82, 95% CI 0.92–3.63) or a GSTM1*2/GSTT1*2 homozygous (OR 2.60, 95% CI 0.72–10.42) were elevated but not to a significant extent. Risk associated with PON1 genotype and phenotype varied with CYP2D6 and GSTP1 genotype but not consistently with a priori hypotheses. Further work is necessary to delineate more clearly pathways of organophosphate activation and non-PON1 pathways of detoxification and to confirm whether CYP and GST polymorphisms alter disease risk in populations exposed to organophosphates.  相似文献   
5.
In human high-density lipoprotein (HDL) represents the major cholesterol carrying lipoprotein class in cord blood, while cholesterol is mainly carried by low-density lipoprotein in maternal serum. Additionally, to carrying cholesterol, HDL also associates with a range of proteins as cargo. We tested the hypothesis that fetal HDL carries proteins qualitatively and quantitatively different from maternal HDL. These differences then contribute to distinct HDL functionality in both circulations. Shotgun proteomics and biochemical analyses were used to assess composition/function of fetal and maternal HDL isolated from uncomplicated human pregnancies at term of gestation. The pattern of analyzed proteins that were statistically elevated in fetal HDL (apoE, proteins involved in coagulation, transport processes) suggests a particle characteristic for the light HDL2 sub-fraction. In contrast, proteins that were enriched in maternal HDL (apoL, apoF, PON1, apoD, apoCs) have been described almost exclusively in the dense HDL3 fraction and relevant to its anti-oxidative function and role in innate immunity. Strikingly, PON1 mass and activity were 5-fold lower (p < 0.01) in the fetus, which was accompanied by attenuation of anti-oxidant capacity of fetal HDL. Despite almost equal quantity of CETP in maternal and fetal HDL, its enzymatic activity was 55% lower (p < 0.001) in the fetal circulation, whereas LCAT activity was not altered. These findings indicate that maternally derived HDL differs from fetal HDL with respect to its proteome, size and function. Absence of apoA-1, apoL and PON1 on fetal HDL is associated with decreased anti-oxidative properties together with deficiency in innate immunity collectively indicating distinct HDLs in fetuses.  相似文献   
6.

Background and aims

Sustained interaction of advanced glycation end products (AGEs) with their receptor RAGE and subsequent signaling plays an important role in the development of diabetic complications. Genetic variation of RAGE gene may be associated with the development of vascular complications in type 2 diabetes mellitus (T2DM).

Objectives

The present study aimed to explore the possible association of RAGE gene polymorphisms namely − 374T/A, − 429T/C and G82S with serum level of AGEs, paraoxonase (PON1) activity and macro-vascular complications (MVC) in Indian type 2 diabetes mellitus patients (T2DM).

Methods

A total of 265 diabetic patients, including DM without any complications (n = 135), DM-MVC (n = 130) and 171 healthy individuals were enrolled. Genotyping of RAGE variants were assessed by polymerase chain reaction-restriction fragment length polymorphism. Serum AGEs were estimated by ELISA and fluorometrically. and PON1 activity was assessed spectrophotometrically.

Results

Of the three examined SNPs, association of − 429T/C polymorphism with MVC in T2DM was observed (OR = 3.001, p = 0.001) in the dominant model. Allele ‘A’ of − 374T/A polymorphism seems to confer better cardiac outcome in T2DM. Patients carrying C allele (− 429T/C) and S allele (G82S) had significantly higher AGEs levels. − 429T/C polymorphism was also found to be associated with low PON1 activity. Interaction analysis revealed that the risk of development of MVC was higher in T2DM patients carrying both a CC genotype of − 429T/C polymorphism and a higher level of AGEs (OR = 1.343, p = 0.040).

Conclusion

RAGE gene polymorphism has a significant effect on AGEs level and PON1 activity in diabetic subjects compared to healthy individuals. Diabetic patients with a CC genotype of − 429T/C are prone to develop MVC, more so if AGEs levels are high and PON1 activity is low.  相似文献   
7.
In mammals, serum paraoxonase (PON1) is tightly associated with high-density lipoprotein (HDL) particles. In human populations, PON1 exhibits a substrate dependent activity polymorphism determined by an Arg/Gln (R/Q) substitution at amino acid residue 192. The physiological role of this protein appears to be involvement in the metabolism of oxidized lipids. Several studies have suggested that the PON1R192 allele may be a risk factor in coronary artery disease. PON1 also plays an important role in the metabolism of organophosphates including insecticides and nerve agents. The PON1R192 isoform hydrolyzes paraoxon rapidly, but diazoxon, soman and sarin slowly compared with the PON1Q192 isoform. Both PON1 isoforms hydrolyze phenylacetate at approximately the same rate, while PON1R192 hydrolyzes chlorpyrifos oxon slightly faster than PONQ192. Animal model studies involving injection of purified rabbit PON1 into mice clearly demonstrated the ability of PON1 to protect cholinesterases from inhibition by OP compounds. The consequence of having low PON1 levels has been addressed with toxicology studies in PON1 knockout mice. These mice showed dramatically increased sensitivity to chlorpyrifos oxon, diazoxon and some increased sensitivity to the respective parent compounds. These observations are consistent with earlier studies that showed a good correlation between high rates of OP hydrolysis by serum PON1 and resistance to specific OP compounds. They are also consistent with the observations that newborns have an increased sensitivity to OP toxicity, due in part to their not expressing adult PON1 levels for weeks to months after birth, depending on the species. Together, these studies point out the importance of considering the genetic variability of PON1192 isoforms and levels as well as the developmental time course of PON1 appearance in serum in developing risk assessment models  相似文献   
8.
9.
BackgroundControversy exists regarding the role of the subfractions of high-density lipoproteins (HDL2 and HDL3) in cardiovascular disease. The functionality of these particles, and their protective role, is due in part to the paraoxonase 1 (PON1) presence in them. The polymorphisms rs662 (Q192R, A/G), rs854560 (L55 M, T/A), and rs705379 (C-108T) of the PON1 gene have been related to enzyme activity and, with the anti-oxidative capacity of the HDL. The objective was to determine the arylesterase PON1 activity in HDL3 and HDL2 and its relationship with the polymorphisms mentioned, in a young population.MethodsThe polymorphisms were determined through mini-sequencing (SnaPshot). The HDL subpopulations were separated via ionic precipitation, cholesterol was measured with enzymatic methods, and PON1 activity was measured through spectrophotometry.ResultsThe results show that the PON1 polymorphisms do not influence the cholesterol in the HDL. A variation between 40.02 and 43.9 mg/dL was in all the polymorphisms without significant differences. Additionally, PON1 activity in the HDL3 subfractions was greater (62.83 ± 20 kU/L) than with HDL2 (35.8 ± 20.8 kU/L) in the whole population and in all the polymorphisms (p < 0.001), and it was independent of the polymorphism and differential arylesterase activity in the Q192R polymorphism (QQ > QR > RR). Thus, 115.90 ± 30.7, 88.78 ± 21.3, 65.29 ± 10.2, respectively, for total HDL, with identical behavior for HDL3 and HDL2.ConclusionsPON1 polymorphisms do not influence the HDL-c, and the PON activity is greater in the HDL3 than in the HDL2, independent of the polymorphism, but it is necessary to delve into the functionality of these findings in different populations.  相似文献   
10.
Mammalian paraoxonases (PONs 1, 2 and 3) are a highly conserved family of esterases, with uncertain physiological functions and natural substrates. Here we characterize the ability of purified recombinant human PONs to hydrolyze estrogen esters, a class of compounds previously not known to be PON substrates. PONs hydrolyzed estrogen mono- and diesters at position 3 of the steroid A-ring. Diesters were better substrates for the PONs and were very efficiently hydrolyzed, particularly by PON3. Esters at position 17 were not cleaved by the PONs unless an adjacent double bound was present. Purified human serum butyryl cholinesterase also hydrolyzed estrogen esters, however it preferably hydrolyzed the mono-esters. The ability of the PONs' to effectively hydrolyze a variety of estrogen esters provides further insight into the structure of their active sites and suggests that natural compounds with aromatic ester groups might be relevant substrates for the PONs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号