首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
排序方式: 共有4条查询结果,搜索用时 484 毫秒
1
1.
目的:基于伴刀豆球蛋白A(ConA)特异性识别并结合甘露糖的特性,建立一种检测O-甘露糖基化的方法,为酵母等宿主表达蛋白的O-糖基化提供一种高效筛选和分析的方法。方法:利用糖苷酶F(PNGF)切除检测蛋白的N-糖链,排除N-糖基化的干扰;通过Q阴离子交换柱和ConA Sepharose 4B柱纯化Western印迹膜封闭蛋白牛血清白蛋白(BSA),除去BSA中甘露糖修饰的蛋白的干扰,优化膜封闭条件;利用辣根过氧化物酶标记的ConA检测具有低甘露糖型N-糖基化修饰能力的毕赤酵母GJK01-HL(Δoch1)表达的抗Her-2抗体是否存在O-甘露糖基化现象。结果:通过PNGF酶切处理,可以完全去除糖蛋白的N-糖链的干扰;BSA经过Q阴离子交换柱和ConASepharose 4B柱纯化后,除去了大部分甘露糖蛋白,可作为封闭蛋白;用建立的方法检测,发现毕赤酵母工程菌GJK01-HL(Δoch1)表达的抗Her-2抗体存在O-甘露糖基化现象。结论:本方法是研究糖蛋白是否发生O-甘露糖基化的有效检测手段,可用于酵母等表达蛋白的O-糖基化的高效筛选和分析。  相似文献   
2.
3.
Protein O-mannosylation has been postulated to be critical for production and secretion of glycoproteins in fungi. Therefore, understanding the regulation of this process and the influence of heterologous expression of glycoproteins on the activity of enzymes engaged in O-glycosylation are of considerable interest. In this study we expressed cellobiohydrolase II (CBHII) of T. reesei, which is normally highly O-mannosylated, in Saccharomyces cerevisiae pmt mutants partially blocked in O-mannosylation. We found that the lack of Pmt1 or Pmt2 protein O-mannosyltransferase activity limited the glycosylation of CBHII, but it did not affect its secretion. The S. cerevisiae pmt1Δ and pmt2Δ mutants expressing T. reesei cbh2 gene showed a decrease of GDP-mannose level and a very high activity of cis-prenyltransferase compared to untransformed strains. On the other hand, elevation of cis-prenyltransferase activity by overexpression of the S. cerevisiae RER2 gene in these mutants led to an increase of dolichyl phosphate mannose synthase activity, but it did not influence the activity of O-mannosyltransferases. Overexpression of the MPG1 gene increased the level of GDP-mannose and stimulated the activity of mannosyltransferases elongating O-linked sugar chains, leading to partial restoration of CBHII glycosylation.  相似文献   
4.
Protein glycosylation in microsporidia, a fungi-related group comprising exclusively obligate intracellular parasitic species, is still poorly documented. Here, we have studied glycoconjugate localization and glycan structures in spores of Encephalitozoon cuniculi and Antonospora locustae, two distantly related microsporidians invading mammalian and insect hosts, respectively. The polar sac-anchoring disc complex or polar cap, an apical element of the sporal invasion apparatus, was strongly periodic acid-thiocarbohydrazide-Ag proteinate-positive. Mannose-binding lectins reacted with the polar cap and recognized several bands (from 20 to 160 kDa) on blots of E. cuniculi protein extracts. Physicochemical analyses provided the first determination of major glycostructures in microsporidia. O-linked glycans were demonstrated to be linear manno-oligosaccharides containing up to eight alpha1, 2-linked mannose residues, thus resembling those reported in some fungi such as Candida albicans. No N-linked glycans were detected. The data are in accordance with gene-based prediction of a minimal O-mannosylation pathway. Further identification of individual mannoproteins should help in the understanding of spore germination mechanism and host-microsporidia interactions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号