首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2014年   1篇
  2009年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Conventional and microwave-assisted synthesis of ZnO nanorods have been performed with and without using PEG400. ZnO nanorods were synthesized with 50-250 nm of diameter which depends on the used surfactant and methods. Surfactant effects of PEG400 on the size and morphology of ZnO nanorods were investigated. The microwave method was compared to the conventional heating method. Morphologies were investigated by using scanning electron microscopy (SEM).  相似文献   
2.
In this review, we highlight our recent achievements in using colloidal gold nanoparticles as building blocks for fabrication of anisotropic and multicomponent nanoparticles (e.g., nanoshells, semiconductor nanocrystals, and gold nanorods). The tunable optical properties of these nanoparticles are well suited for various biomedical and biophotonic applications.  相似文献   
3.
Hydrophobins are small surface active proteins secreted by filamentous fungi. Because of their ability to self-assemble at hydrophilic-hydrophobic interfaces, hydrophobins play a key role in fungal growth and development. In the present work, the organization in aqueous solution of SC3 hydrophobins from the fungus Schizophyllum commune was assessed using Dynamic Light Scattering, Atomic Force Microscopy and fluorescence spectroscopy. These complementary approaches have demonstrated that SC3 hydrophobins are able not only to spontaneously self-assemble at the air-water interface but also in pure water. AFM experiments evidenced that hydrophobins self-assemble in solution into nanorods. Fluorescence assays with thioflavin T allowed establishing that the mechanism governing SC3 hydrophobin self-assembly into nanorods involves β-sheet stacking. SC3 assembly was shown to be strongly influenced by ionic strength and solution pH. The presence of a very low ionic strength significantly favoured the protein self-assembly but a further increase of ions in solution disrupted the protein assembly. It was assessed that solution pH had a significant effect on the SC3 hydrophobins organization. In peculiar, the self-assembly process was considerably reduced at acidic pH. Our findings demonstrate that the self-assembly of SC3 hydrophobins into nanorods of well-defined length can be directly controlled in solution. Such control allows opening the way for the development of new smart self-assembled structures for targeted applications.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号