首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   6篇
  国内免费   2篇
  2023年   3篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   9篇
  2014年   13篇
  2013年   8篇
  2012年   8篇
  2011年   9篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有92条查询结果,搜索用时 286 毫秒
1.
Abstract: We have studied the regional distribution and characteristics of polyamine-sensitive [3H]ifenprodil binding sites by quantitative autoradiography in the rat brain. In forebrain areas ifenprodil displaced [3H]ifenprodil (40 nM) in a biphasic manner with IC50 values ranging from 42 to 352 nM and 401 to 974 µM. In hindbrain regions, including the cerebellum, ifenprodil displacement curves were monophasic with IC50 values in the high micromolar range. Wiping studies using forebrain slices (containing both high- and low-affinity sites) or cerebellar slices (containing only the low-affinity site) showed that high- and low-affinity ifenprodil sites are sensitive to spermine and spermidine, to the aminoglycoside antibiotics neomycin, gentamicin, and kanamycin, and to zinc. Two calmodulin antagonists, W7 and calmidazolium, also displaced [3H]ifenprodil from both sites. Other calmodulin antagonists, including trifluoperazine, prenylamine, and chlorpromazine, selectively displaced [3H]ifenprodil from its low-affinity site in hindbrain and forebrain regions. High-affinity [3H]ifenprodil sites, defined either by ifenprodil displacement curves or by [3H]ifenprodil binding in the presence of 1 mM trifluoperazine, were concentrated in the cortex, hippocampus, striatum, and thalamus with little or no labeling of hindbrain or cerebellar regions. This distribution matches that of NMDAR2B mRNA, supporting data showing that ifenprodil has a preferential action at NMDA receptors containing this subunit. Low-affinity [3H]ifenprodil sites have a more ubiquitous distribution but are especially concentrated in the molecular layer of the cerebellum. [3H]Ifenprodil was found to bind to calmodulin-agarose with very low affinity (IC50 of ifenprodil = 516 µM). This binding was displaced by calmodulin antagonists and by polyamines, with a potency that matched their displacement of [3H]ifenprodil from its low-affinity site in brain sections. However, the localization of the low-affinity [3H]ifenprodil site does not strictly correspond to that of calmodulin, and its identity remains to be further characterized. The restricted localization of high-affinity [3H]ifenprodil binding sites to regions rich in NMDAR2B subunit mRNA may explain the atypical nature of this NMDA antagonist.  相似文献   
2.

Caffeine, a stimulant largely consumed around the world, is a non-selective adenosine receptor antagonist, and therefore caffeine actions at synapses usually, but not always, mirror those of adenosine. Importantly, different adenosine receptors with opposing regulatory actions co-exist at synapses. Through both inhibitory and excitatory high-affinity receptors (A1R and A2R, respectively), adenosine affects NMDA receptor (NMDAR) function at the hippocampus, but surprisingly, there is a lack of knowledge on the effects of caffeine upon this ionotropic glutamatergic receptor deeply involved in both positive (plasticity) and negative (excitotoxicity) synaptic actions. We thus aimed to elucidate the effects of caffeine upon NMDAR-mediated excitatory post-synaptic currents (NMDAR-EPSCs), and its implications upon neuronal Ca2+ homeostasis. We found that caffeine (30–200 μM) facilitates NMDAR-EPSCs on pyramidal CA1 neurons from Balbc/ByJ male mice, an action mimicked, as well as occluded, by 1,3-dipropyl-cyclopentylxantine (DPCPX, 50 nM), thus likely mediated by blockade of inhibitory A1Rs. This action of caffeine cannot be attributed to a pre-synaptic facilitation of transmission because caffeine even increased paired-pulse facilitation of NMDA-EPSCs, indicative of an inhibition of neurotransmitter release. Adenosine A2ARs are involved in this likely pre-synaptic action since the effect of caffeine was mimicked by the A2AR antagonist, SCH58261 (50 nM). Furthermore, caffeine increased the frequency of Ca2+ transients in neuronal cell culture, an action mimicked by the A1R antagonist, DPCPX, and prevented by NMDAR blockade with AP5 (50 μM). Altogether, these results show for the first time an influence of caffeine on NMDA receptor activity at the hippocampus, with impact in neuronal Ca2+ homeostasis.

  相似文献   
3.
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized pathologically by the abnormal deposition of extracellular amyloid-β (Aβ) oligomers. However, the nature and precise mechanism of the toxicity of Aβ oligomers are not clearly understood. Aβ oligomers have been previously shown to cause a major loss of EphB2, a member of the EphB family of receptor tyrosine kinases. To determine the effect of EphB2 on Aβ oligomer-induced neurotoxicity and the underlying molecular mechanisms, we examined the EphB2 gene in cultured hippocampal neurons. Using a cellular model of AD, Aβ1–42 oligomers were confirmed to induce neurotoxicity in a time-dependent manner and result in a major decrease of EphB2. EphB2 overexpression could prevent the neurotoxicity of hippocampal neurons from exposure to Aβ1–42 oligomers for 1 h. Further analysis revealed that EphB2 overexpression increased synaptic NR1 and NR2B expression in Aβ1–42 oligomer-treated neurons. Moreover, EphB2 overexpression prevented Aβ1–42 oligomer-induced downregulation of dephosphorylated p38 MAPK and phosphorylated CREB. Together, these results suggest that EphB2 is a factor which protects hippocampal neurons against the toxicity of Aβ1–42 oligomers, and we infer that the protection of EphB2 is achieved by increasing the synaptic NMDA receptor level and downstream p38 MAPK and CREB signaling in hippocampal neurons. This study provides new molecular insights into the neuroprotective effect of EphB2 and highlights its potential therapeutic role in the management of AD.  相似文献   
4.
Exposure to chronic drugs of abuse has been reported to produce significant changes in postsynaptic protein profile, dendritic spine morphology and synaptic transmission. In the present study we demonstrate alterations in dendritic spine morphology in the frontal cortex and nucleus accumbens of mice following chronic morphine treatment as well as during abstinence for two months. Such alterations were accompanied with significant upregulation of the postsynaptic protein Shank1 in synaptosomal enriched fractions. mRNA levels of Shank1 was also markedly increased during morphine treatment and during withdrawal. Studies of the different postsynaptic proteins at the protein and mRNA levels showed significant alterations in the morphine treated groups compared to that of saline treated controls. Taken together, these observations suggest that Shank1 may have an important role in the regulation of spine morphology induced by chronic morphine leading to addiction.  相似文献   
5.
N-methyl-D-aspartate receptor (NMDAR) activity plays a key role in cerebral ischemia. Although NMDAR is also expressed in cardiomyocytes, little research has been performed on NMDAR activity in myocardial ischemia. Here, using an in vitro oxygen-glucose deprivation (OGD) cardiomyocyte model, we evaluated the effects of NMDAR activity upon calcium influx, viability, apoptosis, and investigated the roles of several key mitogen-activated protein kinases (MAPKs). Primary human neonatal cardiomyocytes were cultured under OGD conditions to mimic in vivo ischemic conditions. Enhancing NMDAR activity via NMDA significantly promoted calcium influx, decreased cell viability, increased apoptosis, and enhanced p38 MAPK phosphorylation in OGD cardiomyocytes (all P < 0.05). These effects were rescued by several calcium-channel blockers (ie, MK-801, La3+, Gap26 peptide, 18β-glycyrrhetinic acid) but most potently rescued via the NMDAR-specific antagonist MK-801 or removal of extracellular free calcium (all P < 0.05). Knocking-down p38 MAPK activity by small-molecule inhibition or genetic methods significantly increased cell viability and reduced apoptosis (all P < 0.05). Enhancing p38 MAPK activity abolished MK-801′s apoptosis-reducing effects in a p38 MAPK-dependent manner. In conclusion, NMDAR-driven calcium influx promotes apoptosis in ischemic human cardiomyocytes, an effect which can be attributed to enhanced p38 MAPK activity.  相似文献   
6.
Serine racemase (SR) catalyses the synthesis of the transmitter/neuromodulator d-serine, which plays a major role in synaptic plasticity and N-methyl d-aspartate receptor neurotoxicity. We now report that SR is phosphorylated at Thr71 and Thr227 as revealed by mass spectrometric analysis and in vivo phosphorylation assays. Thr71 phosphorylation was observed in the cytosolic and membrane-bound SR while Thr227 phosphorylation was restricted to the membrane fraction. The Thr71 site has a motif for proline-directed kinases and is the main phosphorylation site of SR. Experiments with a phosphorylation-deficient SR mutant indicate that Thr71 phosphorylation increases SR activity, suggesting a novel mechanism for regulating d-serine production.  相似文献   
7.
Dopamine D1 receptor (D1R) ligands may directly interact with the NMDA receptor (NMDAR), but detailed knowledge about this effect is lacking. Here we identify D1R ligands that directly modulate NMDARs and examine the contributions of NR2A and NR2B subunits to these interactions. Binding of the open channel blocker [(3)H]MK-801 in membrane preparations from rat- and mouse brain was used as a biochemical measure of the functional state of the NMDAR channel. We show that both D1R agonist A-68930 and dopamine receptor D2 antagonist haloperidol can decrease [(3)H]MK-801 binding with increased potency in membranes from the NR2A(-/-) mice (i.e. in membranes containing NR2B only), as compared to the inhibition obtained in wild-type membranes. Further, a wide range of D1R agonists such as A-68930, SKF-83959, SKF-83822, SKF-38393 and dihydrexidine were able to decrease [(3)H]MK-801 binding, all showing half maximal inhibitory concentrations ~20 μM, and with significant effects occurring at or above 1 μM. With membranes from D1R(-/-) mice, we demonstrate that these effects occurred through a D1R-independent mechanism. Our results demonstrate that dopamine receptor ligands can selectively influence NR2B containing NMDARs, and we characterize direct inhibitory NMDAR effects by different D1R ligands.  相似文献   
8.
Pamenter ME  Hogg DW  Buck LT 《FEBS letters》2008,582(12):1738-1742
Increased nitric oxide (NO) production from hypoxic mammalian neurons increases cerebral blood flow (CBF) but also glutamatergic excitotoxicity and DNA fragmentation. Anoxia-tolerant freshwater turtles have evolved NO-independent mechanisms to increase CBF; however, the mechanism(s) of NO regulation are not understood. In turtle cortex, anoxia or NMDAR blockade depressed NO production by 27+/-3% and 41+/-5%, respectively. NMDAR antagonists also reduced the subsequent anoxic decrease in NO by 74+/-6%, suggesting the majority of the anoxic decrease is due to endogenous suppression of NMDAR activity. Prevention of NO-mediated damage during the transition to and from anoxia may be incidental to natural reductions of NMDAR activity in the anoxic turtle cortex.  相似文献   
9.
10.
Mutations in the CASK gene result in mental retardation and microcephaly in humans, suggesting an important role for CASK in brain. CASK gene knockout in mice causes neonatal lethality, making further elucidation in mouse models difficult. Because CASK was originally identified as a multidomain adaptor protein, identifying a point mutation interrupting a specific protein interaction would be useful in dissecting its molecular function. Here, a Thr-to-Ala mutation in the rat CASK guanylate kinase (GK) domain was shown to reduce interactions among CASK and Tbr-1 and CINAP, two critical brain proteins. The effect is specific: this mutation does not affect CASK dimerization that occurs via the GK domain. The Tbr-1-CASK-CINAP complex regulates expression of the NMDA receptor subunit 2b (NR2b), and we show that this point mutation also affects NR2b promoter activity. The identification of this mutation may make it possible to further dissect the function of CASK in brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号