首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   1篇
  国内免费   6篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2009年   4篇
  2008年   2篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1998年   2篇
  1996年   2篇
  1995年   6篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
1.
Co-occurring orchid species tend to occupy different areas and associate with different mycorrhizal fungi, suggesting that orchid mycorrhizal (OrM) fungi may be unevenly distributed within the soil and, therefore, impact the aboveground spatial distribution of orchids. To test this hypothesis, we investigated spatial variations in the community of potential OrM associates within the roots of three co-habitating orchid species (Anacamptis morio, Gymnadenia conopsea, and Orchis mascula) and the surrounding soil in an orchid-rich calcareous grassland in Southern Belgium using 454 amplicon pyrosequencing. Putative OrM fungi were broadly distributed in the soil, although variations in community composition were strongly related to the proximal host plant. The diversity and frequency of sequences corresponding to OrM fungi in the soil declined with increasing distance from orchid plants, suggesting that the clustered distribution of orchid species may to some extent be explained by the localised distribution of species-specific mycorrhizal associates.  相似文献   
2.
兰科菌根研究综述   总被引:2,自引:0,他引:2  
兰科菌根是一种内生菌根,主要寄生于兰科(Orchidaceae)植物的种子及根系上。对兰科菌根真菌的分类及真菌资源多样性、兰科菌根的形态和菌根对兰科植物的效应等最新研究进展进行了综述。目前研究已知,感染兰科植物根部并能与之共生的真菌绝大多数属于担子菌门(Basidiomycota)和半知菌门(Deuteromycotha),也有部分属于子囊菌门(Ascomycota);兰科菌根的形成可分为两种情况:一是对兰科植物种子的侵染;二是对成长新根的侵染。菌根真菌对兰科植物的种子萌发及植株生长发育均有一定影响。  相似文献   
3.
菌根及其在荒漠化土地恢复中的应用   总被引:30,自引:2,他引:28  
对菌根的作用及其荒漠化对其影响,以及菌根在荒漠化土地恢复中的应用进行了探讨,指出菌根不仅能够促进植物个体养分的吸收,提高植物光合作用,增强植物抗旱、抗盐性,而且能够调节群落内植物间的关系、群落的演替轨道及其生物多样性、耕作、灌溉、过度放牧和开矿等诱发土地荒漠化过程的人类活动直接影响菌根的建立和生存,采用外来菌引入及原来残存菌培育,在恢复区建立丛状菌根植物,菌木化菌根造林及开矿土地管理中表土的存贮等方式都会有力地促进恢复地菌根的建立,并可缩短恢复周期。  相似文献   
4.
Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings   总被引:1,自引:0,他引:1  
Little is known about water transfer via mycorrhizal hyphae to plants, despite its potential importance in seedling establishment and plant community development, especially in arid environments. Therefore, this process was investigated in the study reported in this paper in laboratory-based tripartite mesocosms containing the shrub Arctostaphylos viscida (manzanita) and young seedlings of sugar pine (Pinus lambertiana) and Douglas-fir (Pseudotsuga menziesii). The objectives were to determine whether water could be transported through mycorrhizal symbionts shared by establishing conifers and A. viscida and to compare the results obtained using two tracers: the stable isotope deuterium and the dye lucifer yellow carbohydrazide. Water containing the tracers was added to the central compartment containing single manzanita shrubs. The fungal hyphae were then collected as well as plant roots from coniferous seedlings in the other two compartments to determine whether water was transferred via fungal hyphae. In addition, the length of the hyphae and degree of mycorrhizal colonisation were determined. Internal transcribed spacer–restriction fragment length polymorphism (ITS-RFLP) analysis was used to identify the fungal species involved in dye (water) transfer. Results of the stable isotope analysis showed that water is transferred via mycorrhizal hyphae, but isotopically labelled water was only detected in Douglas-fir roots, not in sugar pine roots. In contrast, the fluorescent dye was transported via mycorrhizal hyphae to both Douglas-fir and sugar pine seedlings. Only 1 of 15 fungal morphotypes (identified as Atheliaceae) growing in the mesocosms transferred the dye. Differences were detected in the water transfer patterns indicated by the deuterium and fluorescent dye tracers, suggesting that the two labels are transported by different mechanisms in the same hyphae and/or that different fungal taxa transfer them via different routes to host plants. We conclude that both tracers can provide information on resource transfer between fungi and plants, but we cannot be sure that the dye transfer data provide accurate indications of water transfer rates and patterns. The isotopic tracer provides more direct indications of water movement and is therefore more suitable than the dye for studying water relations of plants and their associated mycorrhizal fungi.  相似文献   
5.
Experiments were performed with the mycorrhizal fungus Suillus granulatus to define the parameters for production and regeneration of protoplasts. Protoplasts were released at frequencies between 1 and 3×107/ml from mycelium 3 to 7 days old. The best osmotic stabilizer for protoplast release was MgSO4 (0.7 m). To optimize protoplast release and regeneration an enzyme (Novozym 234) concentration 1.7 mg/ml was chosen, with a digestion time of 1 to 2 h. Regenerated colonies formed mycorrhizae within 60 days after inoculation in Pinus caribaea var. hondurensis seedlings.  相似文献   
6.
In earlier studies, we established that mycorrhizal associations protect plants against salt stress. However, elevated boron levels are often present in saline soils and little is known about the effects of boron on salt resistance of mycorrhizal plants. In the present study, we inoculated jack pine (Pinus banksiana) seedlings with Hebeloma sp., Suillus tomentosus and Wilcoxina mikolae var. mikolae to study the effects of mycorrhizal associations on seedling responses to boron and salt. Seedlings were grown in the greenhouse and subjected to 60 mM NaCl, 2 mM H3BO3 or 60 mM NaCl + 2 mM H3BO3 treatments for 4 weeks. Dry weights, shoot:root ratios and chlorophyll concentrations were higher in inoculated seedlings for all treatments compared with the non-inoculated plants. When applied with NaCl, B aggravated needle necrosis while reducing Cl concentrations in shoots of non-inoculated plants. Plants treated with 2 mM H3BO3 + 60 mM NaCl had similar concentrations of Na and B to those that were treated separately with 60 mM NaCl and 2 mM H3BO3. Plants inoculated with mycorrhizal fungi had lower shoot Na concentrations compared with non-inoculated seedlings, but showed relatively little impact from elevated B concentrations.  相似文献   
7.
AM真菌种间差异对枳壳生长及耐热性效应的研究   总被引:8,自引:0,他引:8  
用地表球囊霉、莫西球囊霉、珠状巨孢球囊霉及其混合菌剂接种无菌根枳壳幼苗进行盆栽试验,25℃培养4个月,观察对枳壳菌根形成和营养生长的影响,在40℃高温胁迫30d,调查分析菌根枳壳的耐热性。试验结果表明:接种AM真菌的根系形成了20%~80%的菌根侵染率;菌根枳壳的苗高、苗质量、节间长、茎基粗、须根数量和须根长度等营养生长显著增加;叶片中的SOD,POD活性和根系活力显著增强,可溶性蛋白、可溶性糖含量显著升高,叶片中的MDA含量降低,膜透性显著变小,枳壳苗的耐热性显著提高;但是,AM真菌在促进枳壳苗菌根化、营养生长和提高耐热性方面存在着种间差异,地表球囊霉、莫西球囊霉、珠状巨孢球囊霉、混合菌剂与枳壳根系形成丛枝菌根的侵染率依次为20.4%±1.2%、61.8%±3.4%、85.7%±2.7%、83.3%±2.2%,促进枳壳苗营养生长提高枳壳苗耐热能力的AM真菌依次为:地表球囊霉<莫西球囊霉<珠状巨孢球囊霉<混合菌剂,认为珠状巨孢球囊霉和莫西球囊霉是枳壳耐高温胁迫菌根化育苗的重要优良菌种。  相似文献   
8.
外生菌根真菌与很多植物形成互利共生关系,在营养物质交换和碳循环等方面起着关键性的作用,是森林生态系统的重要组成部分。近期生物技术的发展使得人们对外生菌根菌的群体遗传学和分子生态学有了更加深入的认识。本文介绍了一些常用的鉴定外生菌根菌的分子标记,并对每种分子标记的特点及其适用范围进行了讨论。文中总结了几种常用的鉴定未知外生菌根菌的方法,指出了一些在研究外生菌根菌过程中需要克服的内在困难,其中之一就是很多外生菌根菌不可以人工培养,所以人们缺少对其地下部分分布规律和动态变化的了解。在寄主专一性、物种多样性和丰富度、遗传个体大小、繁殖方式等方面,近期对外生菌根菌的分子生物学研究已经获得了很多重要的结果。作者讨论了这些研究成果对于今后开展外生菌根菌研究的重要意义以及在森林生态系统保育方面的潜在应用价值。  相似文献   
9.
Eulophia alta (Linnaeus) Fawcett & Rendle seeds collected from the Florida Panther National Wildlife Refuge (Collier County, FL; FPNWR) were used in a screen of five asymbiotic orchid seed germination media to determine their effectiveness in promoting germination and protocorm development. In addition, 10 fungal isolates collected from the roots of E. alta at sites in the FPNWR, Highlands County (FL), and Goethe State Forest (Levy County, FL; GSF), and a fungal isolate from the roots of Spiranthes brevilabris collected from GSF were screened for their effectiveness at promoting in vitro symbiotic germination of E. alta seeds. After 18 weeks asymbiotic culture, seeds sown on PhytoTechnology Orchid Seed Sowing Medium germinated to a higher percentage (87.9%) and had a higher percentage of protocorms with developing protomeristems (32.7%) than seeds cultured on Knudson C, Malmgren Modified Terrestrial Orchid Medium, ?-strength Murashige & Skoog, or Vacin & Went Modified Orchid Medium. Significantly more leaf-bearing protocorms were observed on PhytoTechnology Orchid Seed Sowing Medium (0.8%) and Vacin & Went Modified Orchid Medium (1.3%) than other media tested. Of the fungi tested, one fungal isolate (Ealt-396) promoted germination to 69.0%, two isolates promoted germination to less than 0.75% and did not support further protocorm development, and eight isolates did not support germination. Seeds co-cultured in darkness with Ealt-396 grew more rapidly than asymbiotic seedlings following germination. In addition, co-cultured (=symbiotic) seedlings continued to develop more rapidly than asymbiotic seedlings upon transfer to 16/8 h light/dark photoperiod. Symbiotic seed culture of E. alta may be a more desirable method of propagation since protocorms develop more rapidly than seeds sown on asymbiotic media. Symbiotic seedlings may be more appropriate for reintroduction to natural areas than asymbiotic seedlings since symbiotic seedlings could serve to inoculate soils with a germination promoting mycobiont.  相似文献   
10.
In July 2000, six plots of Mediterranean maquis in the Castel Volturno Nature Reserve were burnt at two intensity levels to examine the effects of fire intensities on chemical and biological soil components and their relationships with ecophysiological processes of Phillyrea angustifolia L. Net photosynthesis and stomatal conductance, as well as P availability, were higher in burnt plots than in control plots, even 2 years after fire; the TM density of total soil microfungi was significantly lower in the first 8 months after fire, while xerotolerant and heat-stimulated soil microfungi were still higher 2 years after fire. Significant correlations between photosynthesis and stomatal conductance in resprouts and mycorrhizal status, as well as changes in the soil fungal components of the communities, suggest that both soil and mycorrhizal fungi play a role in immobilizing and translocating nutrients temporarily released in the below-ground system by fire. Nutrient balance interacts with physiological processes, and a feedback mechanism is well represented by stomatal conductance, which allows both the influx of water and mineral nutrients from the soil; moreover, the post-fire increase in photosynthetic activity promotes vigorous resprouting and may lead to increased availability of carbohydrates for soil biota and, consequently, to enhanced vegetation resilience.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号