首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2003年   1篇
  1998年   1篇
排序方式: 共有13条查询结果,搜索用时 46 毫秒
1.
The head lice, Pediculus humanus capitis (Phthiraptera:Pediculidae), is an obligate ectoparasite of humans that causes pediculosis capitis, a nuisance for millions of people worldwide, with high prevalence in children. Pediculosis capitis has been treated by methods that include the physical remotion of lice, various domestic treatments and conventional insecticides. None of these methods render complete protection, and there is clear evidence for the evolution of resistance and cross-resistance to conventional insecticides. Non-toxic alternative options are hence needed for head lice treatment and/or prevention, and natural products from plants, especially essential oils (EOs), are good candidates for safer control agents that may provide good anti-lice activity and low levels of evolved resistance. A few EOs have been tested as repellents with promissory results, although often in vitro tests and clinical trials produce contradictory results. A handful of fixed extracts and several EOs and their individual components have also been tested as contact pediculicides or fumigants. The studies have focused mainly on plant families characterized for the production of EOs. While many EOs and individual compounds showed pediculicide activity, comparing results is difficult due to the diverse bioassay methodologies. Studies of anti-lice activity of individual EO components provide the basis for preliminary conclusions of structure–activity relationships, although no clear patterns can yet be drawn. We here attempt to provide a concise compilation of the available information on anti-lice activity of plant extracts and plant-derived compounds, which we hope may be of help for future developments in this area.
  相似文献   
2.
Foliage of trees from five Chinese Cupressus species was analysed for volatile monoterpenoids, sesquiterpenoids and diterpenoids. Multivariate analysis of the terpenoid data indicated that C. gigantea is most distinct, but otherwise no obvious chemotaxonomic groupings were evident. Comparison of the Cupressus analytical data with that of specimens of five Chamaecyparis species indicated that Cupressus funebris should not be reclassified into Chamaecyparis.  相似文献   
3.
Ligustrum robustum Bl. (syn. Ligustrum purpurascens Y. C. Yang), a species growing in the southwest of China is used as traditional Chinese tea named Ku-Ding-Cha. 16 compounds (1–16) were isolated from the species L. robustum in present investigation and seven of them (1, 2, 11–14, 16) were firstly reported from this species, compound 14 was firstly reported from the genus Ligustrum and the family Oleaceae. The chemotaxonomic significance of these compounds were summarized.  相似文献   
4.
Short syntheses of cuniloside B and cypellocarpin C, (+)-(R)-oleuropeic acid-containing carbohydrates, are reported. Also disclosed are syntheses of the noreugenin glycosides, undulatoside A and corymbosins K1 and K2. Leaf extracts of 28 diverse eucalypts revealed cuniloside B to be present in all, and cypellocarpin C to be present in most, of the species examined. The widespread occurrence of these carbohydrate monoterpenoid esters supports their roles in essential oil biosynthesis or mobilization from sites of synthesis to secretory cavity lumena.  相似文献   
5.
In our survey on the chemical composition of Chinese folk medicines to further elucidate their chemical substances for the treatment of diseases, we investigated the chemical constituents of the plants Eupatorium fortunei. The investigation led to the isolation and identification of two new (1 and 2) and five known (37) thymol derivatives. Their structures were elucidated on the basis of extensive 1D and 2D NMR (COSY, HMQC, HMBC, and NOESY) and mass (ESIMS and HR-ESIMS) spectroscopic data analyses. The inhibitory activities on LPS-induced NO production of these compounds were also evaluated.  相似文献   
6.
In this study, we isolated two new monoterpenoids hookerinoids A and B (1 and 2; rare arranged nonglycosidic bis-iridoids) and hookerinoid C (3; a novel norursane-type triterpenoid) in addition to two known compounds, 11,12-epoxy-2,6-dihydroxy-24-norursa-1,4-dien-3-on-2-on-(28  13)-olide (4) and rivularicin (5), from Pterocephalus hookeri. The structures of 1–3 were established using one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy and high-resolution electrospray ionisation mass spectrometry. All compounds were isolated from this plant for the first time. Bis-iridoids isolated from P. hookeri possessed secoiridoid/iridoid subtype skeletons. Therefore, bis-iridoids can be considered chemotaxonomic markers of P. hookeri. The origins of the new compounds (1–3) were postulated and their inhibitory activities on a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway were assayed; 1 and 2 showed obvious activity in inhibiting NF-κB.  相似文献   
7.
The essential‐oil compositions of leaves, flowers, and rhizomes of Alpinia galanga (L.) Willd ., Alpinia calcarata Rosc ., Alpinia speciosa K. Schum. , and Alpinia allughas Rosc . were examined and compared by capillary GC and GC/MS. Monoterpenoids were the major oil constituents identified. 1,8‐Cineole, α‐terpineol, (E)‐methyl cinnamate, camphor, terpinen‐4‐ol, and α‐ and β‐pinenes were the major constituents commonly distributed in leaf and flower essential oils. The presence of endo‐fenchyl acetate, exo‐fenchyl acetate, and endo‐fenchol was the unique feature of rhizome essential oils of A. galanga, A. calcarata, and A. speciosa. On contrary, the rhizome oil of A. allughas was dominated by β‐pinene. Significant qualitative and quantitative variations were observed in essential‐oil compositions of different parts of Alpinia species growing in subtemperate and subtropical regions of Northern India. Cluster analysis was performed to find similarities and differences in essential‐oil compositions based on representative molecular skeletons. Monoterpenoids, viz., 1,8‐cineole, terpinen‐4‐ol, camphor, pinenes, (E)‐methyl cinnamate, and fenchyl derivatives, were used as chemotaxonomic markers.  相似文献   
8.
Analogs of aliphatic monoterpene dienols (geraniol, nerol, linalool, and lavandulol) and non-branched alcohols (norleaf alcohol, matsutake alcohol, etc.) bearing a cyclopropane ring were synthesized, and their odor characteristics were examined. Most of the analogs show odor properties different from their parent compounds.  相似文献   
9.
10.
Total incorporation of exogenously administered [2-14C]acetate into essential oil of palmarosa (Cymbopogon martinii) was found to be relatively higher than that of either [U-14C]sucrose or [U-14C]glucose during inflorescence development. Among the major essential oil constituents, biogenesis of geranyl acetate was much higher than that of geraniol. Alkaline hydrolysis of [14C]labeled geranyl acetate revealed that the majority of the label incorporated into geranyl acetate was present in the geraniol moiety, indicating that only newly synthesized geraniol gets acetylated to form geranyl acetate. Geranyl acetate cleaving esterase (GAE) activity followed a similar pattern during both in vivo and in vitro inflorescence development, with maximum activity at immature inflorescence stages, suggesting the involvement of GAE in geraniol production during inflorescence development. Five esterase isozymes (Est-A to E) were detected in the enzymic fraction of palmarosa inflorescence and all showed GAE activity, with Est-B being significantly increased during inflorescence development. The role of GAE in geraniol production and improving the palmarosa oil quality is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号