首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   1篇
  国内免费   2篇
  2018年   1篇
  2016年   3篇
  2014年   7篇
  2013年   9篇
  2012年   4篇
  2011年   6篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有83条查询结果,搜索用时 31 毫秒
1.
β-Carotene 15–15′-oxygenase (BCO1) catalyzes the oxidative cleavage of dietary provitamin A carotenoids to retinal (vitamin A aldehyde). Aldehydes readily exchange their carbonyl oxygen with water, making oxygen labeling experiments challenging. BCO1 has been thought to be a monooxygenase, incorporating oxygen from O2 and H2O into its cleavage products. This was based on a study that used conditions that favored oxygen exchange with water. We incubated purified recombinant human BCO1 and β-carotene in either 16O2-H218O or 18O2-H216O medium for 15 min at 37 °C, and the relative amounts of 18O-retinal and 16O-retinal were measured by liquid chromatography-tandem mass spectrometry. At least 79% of the retinal produced by the reaction has the same oxygen isotope as the O2 gas used. Together with the data from 18O-retinal-H216O and 16O-retinal-H218O incubations to account for nonenzymatic oxygen exchange, our results show that BCO1 incorporates only oxygen from O2 into retinal. Thus, BCO1 is a dioxygenase.  相似文献   
2.
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) is the target of the statins, important drugs that lower blood cholesterol levels and treat cardiovascular disease. Consequently, the regulation of HMGCR has been investigated in detail. However, this enzyme acts very early in the cholesterol synthesis pathway, with ∼20 subsequent enzymes needed to produce cholesterol. How they are regulated is largely unexplored territory, but there is growing evidence that enzymes beyond HMGCR serve as flux-controlling points. Here, we introduce some of the known regulatory mechanisms affecting enzymes beyond HMGCR and highlight the need to further investigate their control.  相似文献   
3.
The assay for Baeyer-Villiger monooxygenase (BVMO) enzyme activity has relied to date on the spectrophotometric change observed on the oxidation of the nicotinamide cofactor during the enzymatic reaction. By analogy to the cyclohexanol catabolic pathway of Acinetobacter calcoaceticus NCIMB 9871, we have developed a specific colorimetric screening method that utilises an esterase to cleave the lactone that is formed in the BVMO reaction. When carried out in a non-buffered or weakly buffered system the resultant change in pH can be visually detected. This allows the rapid assaying and screening of BVMO enzymes. This has been demonstrated with cyclohexanone monooxygenase from A. calcoaceticus. The resultant colour change has been visualised with washed cell suspensions, individual bacterial colonies on Petri dishes and with semi-purified recombinant enzyme utilising Linbro dishes.  相似文献   
4.
Flower colour and cytochromes P450   总被引:8,自引:0,他引:8  
Flavonoids are major constituents of flower colour. Plants accumulate specific flavonoids and thus every species often exhibits a limited flower colour range. Three cytochromes P450 play critical roles in the flavonoid biosynthetic pathway. Flavonoid 3′-hydroxylase (F3′H, CYP75B) and flavonoid 3′,5′-hydroxylase (F3′5′H, CYP75A) catalyze the hydroxylation of the B-ring of flavonoids and are necessary to biosynthesize cyanidin-(red to magenta) and delphinidin-(violet to blue) based anthocyanins, respectively. Pelargonidin-based anthocyanins (orange to red) are synthesized in their absence. Some species such as roses, carnations and chrysanthemums do not have violet/blue flower colour due to deficiency of F3′5′H. Successful expression of heterologous F3′5′H genes in roses and carnations results in delphinidin production, causing a novel blue/violet flower colour. Down-regulation of F3′H and F3′5′H genes has yielded orange petunia and pink torenia colour that accumulate pelargonidin-based anthocyanins. Flavone synthase II (CYP93B) catalyzes the synthesis of flavones that contribute to the bluing of flower colour, and modulation of FNSII gene expression in petunia and tobacco changes their flower colour. Extensive engineering of the anthocyanin pathway is therefore now possible, and can be expected to enhance the range of flower colours.  相似文献   
5.
通过酶切连接将Burkholderia sp.JTl500的一段DNA片段(4.8kb)亚克隆到表达载体pUC18上,得到重组子pEKl23。测序后的pEKl23重组子4.8kb插入片段的序列已经登陆欧洲EMBL基因库,序列接受号为AJ566333。对这一DNA片段的序列分析显示,此DNA片段含有3个阅读框,且在这3个阅读框5’端发现一启动子特异序列。再用酶切连接方法得到仅含一个阅读框的重组子pXK3,其阅读框长度为1158bp,编码386个氨基酸,与已报道的Ralstonia eutropha HF39羟化酶(单加氧酶,bec)氨基酸序列有64%的同源性。pEKl23对2-萘酸代谢途径中4个关键底物的转化实验结果显示,其基因产物仅对2-萘酸发生加氧转化反应,而且2-萘酸浓度有明显的降低,证实此基因是2-萘酸单加氧酶基因(nmo)。同时发现其基因产物也可以转化苯甲酸钠。该酶对苯甲酸的加氧转化途径正在研究中。SDS-PAGE结果表明,pXK3、pEKl23两重组子中2-萘酸单加氧酶表达量并没明显区别,但加氧酶酶活却存在显著的差别。推测在启动子后,单加氧酶阅读框前的两个阅读框的基因产物,对单加氧酶活有促进作用。  相似文献   
6.
Lytic polysaccharide monooxygenase (LPMO) represents a unique principle of oxidative degradation of recalcitrant insoluble polysaccharides. Used in combination with hydrolytic enzymes, LPMO appears to constitute a significant factor of the efficiency of enzymatic biomass depolymerization. LPMO activity on different cellulose substrates has been shown from the slow release of oxidized oligosaccharides into solution, but an immediate and direct demonstration of the enzyme action on the cellulose surface is lacking. Specificity of LPMO for degrading ordered crystalline and unordered amorphous cellulose material of the substrate surface is also unknown. We show by fluorescence dye adsorption analyzed with confocal laser scanning microscopy that a LPMO (from Neurospora crassa) introduces carboxyl groups primarily in surface-exposed crystalline areas of the cellulosic substrate. Using time-resolved in situ atomic force microscopy we further demonstrate that cellulose nano-fibrils exposed on the surface are degraded into shorter and thinner insoluble fragments. Also using atomic force microscopy, we show that prior action of LPMO enables cellulases to attack otherwise highly resistant crystalline substrate areas and that it promotes an overall faster and more complete surface degradation. Overall, this study reveals key characteristics of LPMO action on the cellulose surface and suggests the effects of substrate morphology on the synergy between LPMO and hydrolytic enzymes in cellulose depolymerization.  相似文献   
7.
Eighty-six species of fungi belonging to sixty-four genera were examined for their ability to metabolize naphthalene. Analysis by thin-layer and high pressure liquid chromatography revealed that naphthalene metabolism occurred in forty-seven species belonging to thirty-four genera from the major fungal taxa. All organisms tested from the order Mucorales oxidized naphthalene with species of Cunninghamella, Syncephalastrum and Mucor showing the greatest activity. Significant metabolism was also observed with Neurospora crassa, Claviceps paspali and four species of Psilocybe. The predominant metabolite formed by most organisms was 1-naphthol. Other products identified were, 4-hydroxy-1-tetralone, trans-1,2-dihydroxy-1,2-dihydronaphthalene, 2-naphthol, 1,2-and 1,4-naphthoquinone.  相似文献   
8.
The ability of hemoproteins to catalyze epoxidation or hydroxylation reactions is usually associated with a cysteine as the proximal ligand to the heme, as in cytochrome P450 or nitric oxide synthase. Catalase-related allene oxide synthase (cAOS) from the coral Plexaura homomalla, like catalase itself, has tyrosine as the proximal heme ligand. Its natural reaction is to convert 8R-hydroperoxy-eicosatetraenoic acid (8R-HPETE) to an allene epoxide, a reaction activated by the ferric heme, forming product via the Fe(IV)-OH intermediate, Compound II. Here we oxidized cAOS to Compound I (Fe(V)=O) using the oxygen donor iodosylbenzene and investigated the catalytic competence of the enzyme. 8R-hydroxyeicosatetraenoic acid (8R-HETE), the hydroxy analog of the natural substrate, normally unreactive with cAOS, was thereby epoxidized stereospecifically on the 9,10 double bond to form 8R-hydroxy-9R,10R-trans-epoxy-eicosa-5Z,11Z,14Z-trienoic acid as the predominant product; the turnover was 1/s using 100 μm iodosylbenzene. The enantiomer, 8S-HETE, was epoxidized stereospecifically, although with less regiospecificity, and was hydroxylated on the 13- and 16-carbons. Arachidonic acid was converted to two major products, 8R-HETE and 8R,9S-eicosatrienoic acid (8R,9S-EET), plus other chiral monoepoxides and bis-allylic 10S-HETE. Linoleic acid was epoxidized, whereas stearic acid was not metabolized. We conclude that when cAOS is charged with an oxygen donor, it can act as a stereospecific monooxygenase. Our results indicate that in the tyrosine-liganded cAOS, a catalase-related hemoprotein in which a polyunsaturated fatty acid can enter the active site, the enzyme has the potential to mimic the activities of typical P450 epoxygenases and some capabilities of P450 hydroxylases.  相似文献   
9.
A unique feature of P450 enzymes is in the presence of a thiolate ligand heme but its exact function in catalysis is a matter of debate. For P450 dependent monooxygenases the "active oxygen" complex seems to exist only as a transition state in which the thiolate ligand provides electron density in order to prevent pi-backbonding of the oxygen to the iron (-S-Fe-O(z.rad;)). The corresponding ground state (Compound I) would be a ferryl species (Fe(IV)z.dbnd6;O) with an electron hole either at the porphyrin or at the sulfur. Apart from this role we postulate that a second function is related to the electronic structure of Compound II as an electron acceptor and this property is shared among monooxygenases, thromboxane synthase, prostacyclin synthase, allene oxide synthase, P450(NOR(-)) and chloroperoxidase. As a common step in all P450 enzymes an extremely rapid electron uptake by Compound II allows that the primary substrate radicals are oxidized to cations which immediately combine with a neighbouring nucleophile. Thus "electron transfer" may substitute for "oxygen rebound" as the final step leading to product formation. The same principle also applies methane monooxygenases in which the role of the thiyl sulfur is replaced by a ferryl-oxyl entity.  相似文献   
10.
Cytochrome P450 can undergo inactivation following monooxygenase reactions in liver microsomes of untreated, phenobarbital and 3-methylcholanthrene-treated rats and rabbits. The acceleration of cytochrome P450 loss in the presence of catalase inhibitors (sodium azide, hydroxylamine) indicates that hydrogen peroxide is involved in hemoprotein degradation. It was revealed that cytochrome P450 is inactivated mainly by H2O2 formed through peroxy complex breakdown, whereas H2O2 formed via the dismutation of superoxide anions produces a slight inactivating effect. The hydrogen peroxide added outside or formed by a glucose-glucose oxidase system has less of an inactivating effect than H2O2 produced within the cytochrome P450 active center. Self-inactivation of cytochrome P450 during oxygenase reactions is highly specific. Other components of the monooxygenase system, such as cytochrome b5, NADH- and NADPH-specific flavorproteins, undergo no inactivation. The alterations in phospholipid content and in the rate of lipid peroxidation were not observed as well. The inactivation of cytochrome P450 by H2O2 is the result of heme loss or destruction without cytochrome P420 formation. Such. a mechanism operates with different substrates and cytochrome P450 species catalyzing the partially coupled monooxygenase reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号