首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
  国内免费   5篇
  2018年   1篇
  2017年   3篇
  2011年   2篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2002年   3篇
  1999年   1篇
  1989年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
Root demographic processes (birth and death) were measured using minirhizotrons in the soil warming experiments at the summit of Great Dun Fell, United Kingdom (845 m). The soil warming treatment raised soil temperature at 2 cm depth by nearly 3°C. The first experiment ran for 6 months (1994), the second for 18 (1995–1996). In both experiments, heating increased death rates for roots, but birth rates were not significantly increased in the first experiment. The lack of stimulation of death rate in 1996 is probably an artefact, caused by completion of measurements in late summer of 1996, before the seasonal demography was concluded: root death continued over the winter of 1995–1996. Measurements of instantaneous death rates confirmed this: they were accelerated by warming in the second experiment. In the one complete year (1995–1996) in which measurements were taken, net root numbers by the end of the year were not affected by soil warming. The best explanatory environmental variable for root birth rate in both experiments was photosynthetically active radiation (PAR) flux, averaged over the previous 5 (first experiment) or 10 days (second experiment). In the second experiment, the relationship between birth rate and PAR flux was steeper and stronger in heated than in unheated plots. Death rate was best explained by vegetation temperature. These results provide further evidence that root production acclimates to temperature and is driven by the availability of photosynthate. The stimulation of root growth due to soil warming was almost certainly the result of changes in nutrient availability following enhanced decomposition. Received: 4 May 1999 / Accepted: 18 May 1999  相似文献   
2.
高寒草甸地下根系生长动态对积雪变化的响应   总被引:1,自引:0,他引:1  
2013年11月至2014年8月在青藏高原东缘红原县高寒草甸通过人工堆积的方法,进行了积雪量野外控制试验。以自然降雪的积雪量为对照(CK),设置了S1、S2和S3(积雪量分别为自然对照的2倍、3倍和4倍)3个处理,运用微根窗法追踪研究了积雪量改变后高寒草甸植被根系生长动态,并测定了积雪变化对土壤温度的影响。结果表明:高寒草甸植被根系生长存在明显的季节性变化,随着时间的推移,根系表面积、根尖数量及现存量逐渐增加并在8—9月达到最大值;当冬季积雪量达到143.4mm(S1),对根系生长最为有利(根系表面积、根尖数量、现存量及生产量最大),根系生长旺盛期(净生产速率较高)有所提前和延长,但随着积雪量进一步增加,积雪对根系生长的正效应逐渐降低,根系生长旺盛期逐渐推迟甚至消失;研究还发现,随着积雪量增加,0—10 cm土层土壤温度逐渐降低,相似的变化规律也出现在10—20 cm土层,但在时间上有所延迟;相关性分析表明,在不同土层中,根系生长与土壤温度均呈正相关。因此,积雪变化通过改变土壤温度影响高寒草甸植物根系的生长发育,最终可能会影响高寒草甸生态系统的碳分配与碳循环过程。  相似文献   
3.
Fine root turnover is a major pathway for car-bon and nutrient cycling in forest ecosystems. However, to estimate fine root turnover, it is important to first understand the fine root dynamic processes associated with soil resource availability and climate factors. The objectives of this study were: (1) to examine patterns of fine root production and mortality in different seasons and soil depths in the Larix gmelinii and Fraxinus man-dshurica plantations, (2) to analyze the correlation of fine root production and mortality with environmental factors such as air temperature, precipitation, soil temperature and available nitrogen, and (3) to estimate fine root turn-over. We installed 36 Minirhizotron tubes in six mono-specific plots of each species in September 2003 in the Mao'ershan Experimental Forest Station. Minirhizotron sampling was conducted every two weeks from April 2004 to April 2005. We calculated the average fine root length, annual fine root length production and mortality using image data of Minirhizotrons, and estimated fine root turnover using three approaches. Results show that the average growth rate and mortality rate in L. melinii were markedly smaller than in F. mandshurica, and were high-est in the surface soil and lowest at the bottom among all the four soil layers. The annual fine root production and mortality in F. mandshurica were significantly higher than in L. gmelinii. The fine root production in spring and summer accounted for 41.7% and 39.7% of the total annual production in F. mandshurica and 24.0% and 51.2% in L. gmelinii. The majority of fine root mortality occurred in spring and summer for F. mandshurica and in summer and autumn for L. gmelinii. The turnover rate was 3.1 a-1 for L. gmelinii and 2.7 a-1 for F. mandshurica. Multiple regression analysis indicates that climate and soil resource factors together could explain 80% of the varia-tions of the fine root seasonal growth and 95% of the seasonal mortality. In conclusion, fine root production and mortality in L. gmelinii and F. mandshurica have dif-ferent patterns in different seasons and at different soil depths. Air temperature, precipitation, soil temperature and soil available nitrogen integratively control the dynamics of fine root production, mortality and turnover in both species.  相似文献   
4.
5.
Soil insects alter fine root demography in peach (Prunus persica)   总被引:3,自引:0,他引:3  
Minirhizotrons were used to assess the effects of soil insect suppression on the demography of peach fine roots (<1 mm diameter) over two growing seasons. The experiment was conducted at the USDA–ARS Appalachian Fruit Research Station in Kearneysville, WV, USA using six 15‐year‐old peach trees. Clear butyrate minirhizotrons were installed beneath each tree in April 1996. Soil drench treatments were applied around individual minirhizotron tubes at monthly intervals and consisted of 1 L of water or 250 µL of a broad‐spectrum insecticide in 1 L of water. Roots were videotaped at 2‐ to 4‐week intervals during the 1996 and 1997 growing seasons. Insecticide application was associated with a significant increase in fine root longevity: the median lifespans of insecticide‐treated roots were 46–125 d longer than those of control roots. In addition, the development of brown pigmentation was significantly delayed in insecticide‐treated roots. Insecticide application did not appear to increase soil fertility, as accumulation of NO3, NH4+, and PO42‐ on mixed bed ion‐exchange resin was similar in treated and untreated soil. These results suggest that interactions with below‐ground insects can significantly influence root longevity and may alter the rate at which roots undergo developmental changes in anatomy and physiology.  相似文献   
6.
柠条细根的空间分布特征及其季节动态   总被引:3,自引:0,他引:3  
以晋西北黄土区30年生柠条(Caragana korshinskii Kom.)人工林为研究对象,2007年应用Minirhizotron技术,分别在距茎干水平距离0、50、100 cm处设点,对林地0-100 cm土层深度范围内的柠条细根空间分布及其生长季的动态进行了研究。结果表明:(1)生长季柠条细根根长密度(RLD)总平均值为1.3423 mm/cm2。在水平方向上,距茎干水平距离50 cm处分布最多(1.5369 mm/cm2),其次为0 cm处(1.3855 mm/cm2), 100cm处分布最少(1.1044 mm/cm2)。在垂直深度上,各土层RLD平均值大小顺序为40-60 cm>60-80 cm>20-40 cm>0-20 cm>80-100 cm;(2)在0-100 cm土层范围内,月平均RLD在生长季的波动范围为0.4405 2.1040 mm/cm2,其中9月份最多,4月份最少;RLD在5个土层深度3个水平距离处随季节变化均表现先增加后减少的趋势,且不同空间位置RLD峰值变化均在秋季(8 10月份)波动。细根的这种时空分布差异,可能主要受林下土壤资源空间异质性及其季节性变化的影响,但也不排除其它因素的影响(如真菌,植食性昆虫)。  相似文献   
7.
柠条细根的分布和动态及其与土壤资源有效性的关系   总被引:3,自引:0,他引:3  
史建伟  王孟本  陈建文  张国明 《生态学报》2011,31(14):3990-3998
受土壤资源有效性时空异质性的影响,植物细根会表现出明显的垂直分布和季节变化特征。揭示这些特征对认识细根的养分和水分吸收规律,预测C在地下的分配特点具有重要意义。本研究运用Minirhizotron技术对晋西黄土丘陵区30年生柠条(Caragana korshinskii Kom.)人工林0-100cm土层深度范围内细根的密度( FRD, N cm-2)、根长密度( FRLD, mm cm-2)、平均直径(FRDi, mm)和根表面积(FRSA, mm2 cm-2)的垂直分布特征和季节动态进行了一个生长季的观测,并分析了这些参数与土壤温度、水分和有效氮之间的关系。结果表明:(1)FRD、FRLD和FRSA均表现出随土层深度增加而先增大后减小的趋势,以40-60cm土层之值最大(分别占总数的34.3%、35.5%和37.3%);而FRDi随土层深度增加而减小,其最大值为0.31970.0231mm,最小值为0.28840.0109 mm;(2)受土壤资源有效性季节变化的影响,FRD、FRLD和FRSA在不同土层(除0-20cm外)表现出相似的季节动态,即随季节变化而先增大后减小,春季小(分别为0.2204 N cm-2,1.8482 mm cm-2,2.2647 mm2 cm-2)而秋季大(分别为0.5316 N cm-2,4.4046mm cm-2,4.3007mm2 cm-2);FRDi则表现由粗逐渐变细的过程,春季最粗(0.3659mm)而秋季最细(0.2712mm);(3) 各细根参数与土壤温度、水分和有效氮在各土层存在不同程度的相关性。从简单相关分析来看,细根的季节性变化主要受土壤温度和水分的影响,有效氮的影响不明显。FRD、FRLD和FRSA在0-20cm土层主要受土壤水分影响(r=-0.729--0.914, p<0.05),而在20-100cm土层则主要受土壤温度的影响,且显著性随土层加深而增加(r=-0.028-0.832, p<0.05)。各土层细根与土壤有效资源间的相关性反映了细根功能的季节性差异。综合分析表明,各细根参数季节变化的54.0%-98.6%是由土壤温度和水分的交互作用而引起。  相似文献   
8.
We used minirhizotrons to determine patterns of root longevity andturnover for the perennial bunchgrass Bouteloua gracilisinthe shortgrass steppe of eastern Colorado, USA. We hypothesized that rootlongevity would be partially controlled by root diameter, following previouslyobserved patterns in woody plants. In addition, we hypothesized that rootturnover would be greatest in surface soil horizons and decrease with depth dueto variation in soil moisture availability and temperature. Root longevity wascorrelated with root diameter. Median life span of roots > 0.4mm was approximately 320 days, while roots < 0.2mmhad a median life span of 180 days. There was approximately a 6%decreasein the likelihood of mortality with a 0.10-mm increase inroot diameter, controlling for the effect of depth in the soil profile. Rootlength production and mortality were highest in the upper20 cm of the soil profile and decreased with depth.However,because root length density also decreased with depth, there were nosignificantdifferences in turnover rate of root length among sampling intervals. Turnoverwas approximately 0.86 yr–1 based on root length production,while turnover was 0.35 yr–1 using root length mortality as ameasurement of flux. The imbalance between turnover estimates may be aconsequence of the time the minirhizotrons were in place prior to imaging or mayresult from our lack of over-winter measures of mortality. Our worksuggests that Bouteloua gracilis roots have complex lifehistory strategies, similar to woody species. Some portion of the root systemishighly ephemeral, while slightly larger roots persist much longer. Thesedifferences have implications for belowground carbon and nitrogen cycles in theshortgrass steppe.  相似文献   
9.
植物根系研究新技术Minirhizotron的起源、发展和应用   总被引:18,自引:4,他引:14  
根系是土壤和植物的动态界面,对植物和土壤均具有重要意义。但由于根系深处地下,观测研究十分不便,导致根系研究在广度、深度上均落后于地上部分。随着对根系在生态系统以及全球碳平衡中重要作用的认识,根系渐渐成为国际相关领域的研究热点之一。Minirhizotron(微根区管或小观察窗)技术的诞生和应用,使根系研究手段得到了进一步发展,成为根系研究技术发展的重要里程碑。Minirhizotron技术主要由透明观察管、观测设备和记录设备组成,观测设备曾先后使用了普通镜子、观察镜和相机(或摄像机),记录设备也相应地经历了手工绘制、传统黑白、彩色相片或录像带以及高清晰数字图像。同时,还开发了多种图像自动分析系统,使该项技术日臻完善。Minirhizotron技术可以以非破坏方式,定期对同一根系的出现、生长、衰老、死亡和消失进行连续观察,对根系伸长、根系密度、扎根深度、侧根伸展、分枝特性、菌根特性以及细根动态、根系生命周期和分解等进行观测研究,同时,也可开展根系对不同处理响应的研究。因此,Minirhizotron技术必将在农业、林业和环境等科学领域得到越来越广泛的应用。  相似文献   
10.
Fine root turnover is a major pathway for carbon and nutrient cycling in forest ecosystems. However, to estimate fine root turnover, it is important to first understand the fine root dynamic processes associated with soil resource availability and climate factors. The objectives of this study were: (1) to examine patterns of fine root production and mortality in different seasons and soil depths in the Larix gmelinii and Fraxinus mandshurica plantations, (2) to analyze the correlation of fine root production and mortality with environmental factors such as air temperature, precipitation, soil temperature and available nitrogen, and (3) to estimate fine root turnover. We installed 36 Minirhizotron tubes in six mono-specific plots of each species in September 2003 in the Mao’ershan Experimental Forest Station. Minirhizotron sampling was conducted every two weeks from April 2004 to April 2005. We calculated the average fine root length, annual fine root length production and mortality using image data of Minirhizotrons, and estimated fine root turnover using three approaches. Results show that the average growth rate and mortality rate in L. melinii were markedly smaller than in F. mandshurica, and were highest in the surface soil and lowest at the bottom among all the four soil layers. The annual fine root production and mortality in F. mandshurica were significantly higher than in L. gmelinii. The fine root production in spring and summer accounted for 41.7% and 39.7% of the total annual production in F. mandshurica and 24.0% and 51.2% in L. gmelinii. The majority of fine root mortality occurred in spring and summer for F. mandshurica and in summer and autumn for L. gmelinii. The turnover rate was 3.1 a−1 for L. gmelinii and 2.7 a−1 for F. mandshurica. Multiple regression analysis indicates that climate and soil resource factors together could explain 80% of the variations of the fine root seasonal growth and 95% of the seasonal mortality. In conclusion, fine root production and mortality in L. gmelinii and F. mandshurica have different patterns in different seasons and at different soil depths. Air temperature, precipitation, soil temperature and soil available nitrogen integratively control the dynamics of fine root production, mortality and turnover in both species. Transtlated from Journal of Plant Ecology, 2007, 31(2): 333–342 [译自: 植物生态学报]  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号