首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
  国内免费   1篇
  2023年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   4篇
  2004年   2篇
  2001年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有34条查询结果,搜索用时 31 毫秒
1.
BackgroundThis study tested the hypothesis that abnormal maternal metabolism of both homocysteine and thyroid hormone network in pregnant women is associated with neural tube defects (NTDs) in a part of China with high NTD prevalence.MethodsA case–control study was performed between 2007 and 2009 in Lüliang Mountains, Shanxi Province. This study included 83 pregnant women who had fetuses with NTDs (cases) and 90 pregnant women with normal fetuses (controls). In addition, a cell model to illustrate the epidemiological findings was established.ResultsFetuses of mother who had both high total homocysteine (tHcy) and inadequate free thyroxine were 3 times more at risk of developing NTDs (adjusted odds ratio = 3.5; 95 % confidence interval = 1.2–10.4; cases vs. controls) using multivariate logistic regression models. Furthermore, biological interaction between metabolisms of Hcy and thyroid hormones was demonstrated in vitro. In homocysteine thiolactone of a metabolite of Hcy-treated mouse embryonic neural stem NE4C cells, genes (Bmp7, Ctnnb1, Notch 1, Gli2, and Rxra) related to both neural tube closure and thyroid hormone network were shown to be regulated by H3K79 homocysteinylation, which increased their expression levels.ConclusionsThe effect of maternal serum high tHcy on risk of developing NTDs is depended on maternal serum level of thyroxine. Meanwhile, a higher level of tHcy might also affect both maternal metabolism of thyroid hormone and neural tube closure in embryogenesis through homocysteinylation of histones.  相似文献   
2.
Availability of Zn to plant is hampered by its immobile nature and adverse soil conditions. Thus, Zn deficiency is observed even though high amount is available in soil. Root-shoot barrier, a major controller of zinc transport in plant is highly affected by changes in the anatomical structure of conducting tissue and adverse soil conditions like pH, clay content, calcium carbonate content, etc. Zn deficiency results in severe yield losses and in acute cases plant death. Zn deficiency in edible plant parts results in micronutrient malnutrition leading to stunted growth and improper sexual development in humans. To overcome this problem several strategies have been used to enrich Zn availability in edible plant parts, including nutrient management, biotechnological tools, and classical and molecular breeding approaches.  相似文献   
3.
Hepatically-derived selenoprotein P (SePP) transports selenium (Se) via blood to other tissues including the testes. Male Sepp-knockout mice are infertile. SePP-mediated Se transport to Sertoli cells is needed for supporting biosynthesis of the selenoenzyme glutathione peroxidase-4 (GPX4) in spermatozoa. GPX4 becomes a structural component of sperm midpiece during sperm maturation, and its expression correlates to semen quality. We tested whether SePP is also present in seminal plasma, potentially correlating to fertility parameters. Semen quality was assessed by sperm density, morphology and motility. SePP was measured by an immunoluminometric assay, and trace elements were determined by X-ray fluorescence spectroscopy. SePP levels were considerably lower in seminal plasma as compared to serum (0.4 ± 0.1 mg/l vs. 3.5 ± 1.0 mg/l); Se concentrations showed a similar but less pronounced difference (48.9 ± 20.7 μg/l vs. 106.7 ± 17.3 μg/l). Se and Zn correlated positively in seminal fluid but not in serum. Seminal plasma SePP concentrations were independent of serum SePP concentrations, but correlated positively to sperm density and fraction of vital sperm. SePP concentrations in seminal plasma of vasectomized men were similar to controls indicating that accessory sex glands are a testes-independent source of SePP. This notion was corroborated by histochemical analyses localizing SePP in epithelial cells of seminal vesicles. We conclude that SePP is not only involved in Se transport to testes supporting GPX4 biosynthesis but it also becomes secreted into seminal plasma, likely important to protect sperm during storage, genital tract passage and final journey.  相似文献   
4.
5.
The content, composition and variation of vitamin compounds in goat milk have been little studied. An experimental design was based on 28 commercial farms, selected considering the main feeding system (based on main forage and especially pasture access), goat breed (Alpine vs Saanen) and reproductive management (seasonal reproduction), in the main French goat milk production area. Each farm received two visits (spring and autumn) that included a survey on milk production conditions and bulk milk sampling. Milk vitamins (A, E, B2, B6, B9, B12) and carotenoid concentrations plus colour indices were evaluated. A stepwise approach determined the variables of milk production conditions that significantly altered milk indicators. The main forage in the diet was the major factor altering goat milk vitamin and carotenoid concentrations and colour indices. Bulk milk from goats eating fresh grass as forage was richer in α-tocopherol (+64%), pyridoxal (+35%) and total vitamin B6 (+31%), and b* index (characterising milk yellowness in the CIELAB colour space) was also higher (+12%) than in milk from goats eating conserved forages. In milk from goats eating fresh grass, concentrations of pyridoxamine, lutein and total carotenoids were higher than in milk of goats fed corn silage (+24, +118 and +101%, respectively), and retinol and α-tocopherol concentrations were higher than in milk of goats fed partially dehydrated grass (+45 and +55%). Vitamin B2 concentration was higher in milk of goats eating fresh grass than in milk of goats fed hay or corn silage as forage (+10%). However, bulk milk when goats had access to fresh grass was significantly poorer in vitamin B12 than when fed corn silage (?46%) and in γ-tocopherol (?31%) than when fed conserved forage. Alpine goats produced milk with higher vitamin B2 and folate concentrations than Saanen goats (+18 and +14%, respectively). Additionally, the milk colour index that discriminates milks based on their yellow pigment contents was 7% higher in milk from Alpine than Saanen herds, but milk from Saanen goats was richer in lutein (+46%). Goat milks were richer in vitamins B2 and B12 and folates, but poorer in vitamin B6 in autumn than in spring (+12, +133, +15 and ?13%, respectively). This work highlights that goat milk vitamin and carotenoid concentrations and colour indices vary mainly according to the main forage of the diet and secondly according to the breed and season.  相似文献   
6.
Stangoulis JC  Reid RJ  Brown PH  Graham RD 《Planta》2001,213(1):142-146
The permeability of biological membranes to boric acid was investigated using the giant internodal cells of the charophyte alga Chara corallina (Klein ex Will. Esk. R.D. Wood). The advantage of this system is that it is possible to distinguish between membrane transport of boron (B) and complexing of B by plant cell walls. Influx of B was found to be rapid, with equilibrium between the intracellular and extracellular phases being established after approximately 24 h when the external concentration was 50 μM. The intracellular concentration at equilibrium was 55 μM, which is consistent with passive distribution of B across the membrane along with a small amount of internal complexation. Efflux of B occurred with a similar half-time to influx, approximately 3 h, which indicates that the intracellular B was not tightly complexed. The concentration dependence of short-term influx measured with 10B-enriched boric acid was biphasic. This was tentatively attributed to the operation of two separate transport systems, a facilitated system that saturates at 5 μM, and a linear component due to simple diffusion of B through the membrane. V max and K m for the facilitated transport system were 135 pmol m−2 s−1 and 2 μM, respectively. The permeability coefficient for boric acid in the Chara plasmalemma estimated from the slope of the linear influx component was 4.4 × 10−7 cm s−1 which is an order of magnitude lower than computed from the ether:water partition coefficient for B. Received: 14 August 2000 / Accepted: 16 September 2000  相似文献   
7.
The catalase activity and the isozyme pattern of the metalloenzyme system superoxide dismutase (SOD) have been determined in pea ( Pisum sativum L., cv, Lincoln) leaves of different ages (apical, middle and lower), during several stages of plant development. Pea seedlings were grown in full nutrient solution in a phytotron. Catalase activity was determined polarographically, and superoxide dismutase isozymes (Mn-SOD, Cu, Zn-SOD I and Cu, Zn-SOD II) were separated by acrylamide gel electrophoresis and their relative amounts quantified by densitonietry. The results indicate that the relative amounts of SOD isozymes are slightly different in leaves of different ages during plant growth and, interestingly, each molecular form of SOD shows a clearly distinct pattern during plant development. These changes in the relative percentages of SOD isozymes could be due to the induction of the distinct molecular forms of SOD by the metals Mn, Cu and Zn, translocated to the different leaves as a result of plant development. The relative percentage of the Mn-SOD isozyme showed a similar pattern to that of catalase activity, suggesting a possible link between these two metalloenzymes at subcellular level, both cooperating to remove the toxic effects of O-2 and H2O2.
An additional conclusion is that before a certain metalloenzyme can be used as a marker to assess the plant micronutrient status, it is essential to have a detalled study of its activity pattern in leaves of different age during plant development.  相似文献   
8.
Exploding global population, rapid urbanization, salinization of soils, decreasing arable land availability, groundwater resources, and dynamic climatic conditions pose impending damage to our food security by reducing the grain quality and quantity. This issue is further compounded in arid and semi-arid regions due to the shortage of irrigation water and erratic rainfalls. Millets are gluten (a family of proteins)-free and cultivated all over the globe for human consumption, fuel, feed, and fodder. They provide nutritional security for the under- and malnourished. With the deployment of strategies like foliar spray, traditional/marker-assisted breeding, identification of candidate genes for the translocation of important minerals, and genome-editing technologies, it is now tenable to biofortify important millets. Since the bioavailability of iron and zinc has been proven in human trials, the challenge is to make such grains accessible. This review encompasses nutritional benefits, progress made, challenges being encountered, and prospects of enriching millet crops with essential minerals.  相似文献   
9.
I examine the relationship between micronutrient deficiency and the prevalence of mothers’ overweight/obesity in Egypt using the 1997 Egyptian Integrated Household Survey. The ordered logit results show an overlap between micronutrient deficiency and the prevalence of mothers’ overweight/obesity in Egypt. The odds of being overweight/obese are 80.8% higher for micronutrient deficient mothers than for non-deficient mothers, keeping all other variables constant. These results have at least two interesting policy implications. First, as the potential impact of the interaction between micronutrient deficiency and chronic diseases is not well known, the coexistence of micronutrient deficient and overweight/obese women can raise new and serious public health problems in the country. Second, the Egyptian food subsidy program, which lowers the relative prices of energy-dense, nutrient-poor food items, can be one of the major factors for the emergence of overweight/obese and micronutrient deficient mothers in the country. Changing the orientation of the food subsidy program may help to simultaneously address this double burden of mothers’ malnutrition.  相似文献   
10.
To gain a better understanding of the mechanisms of improvement of iron nutrition of peanut (Arachis hypogaea L.) intercropped with maize (Zea mays L.) in calcareous soil, both greenhouse and field experiments were conducted to investigate the rhizosphere (phytosiderophores) effects from maize, barley, oats and wheat with different phytosiderophores release rates on iron nutrition and other micronutrients in calcareous soil. Six cropping treatments were examined in a greenhouse experiment: peanut grown separately in monoculture, normal peanut/maize intercropping (two genotypes: Danyu13, Zhongdan12), peanut/barley intercropping, peanut/oats intercropping, and peanut/wheat intercropping. Additionally, we investigated in a field experiment the same five cropping systems as the greenhouse experiment (maize/peanut intercropping not including Zhongdan12). Our results show that the chlorophyll and active Fe concentrations in the young leaves of the peanut in the intercropping system with different gramineous species were much higher than those of the peanut in monoculture. In greenhouse conditions, the Fe concentration in the shoots of peanut plants grown in the intercropping systems of two maize genotypes separately were 1.40–1.44, 1.47–1.64 and 1.15–1.42 times higher respectively than those of peanut plants grown in monocropping at 55, 60 and 70 days. In particular, the Fe concentration in shoots of peanut plants grown in the intercropping systems of barley, oats and wheat were not only higher than those in monocropping but also higher than those in peanut intercropped cropping with maize. In the field, the concentration of Fe in shoot of intercropped peanut plants in rows 1–3 from gramineous species were significantly higher than in monocropping at the flowering stage. Simultaneously with iron nutrition variation in peanut, Zn and Cu concentrations of intercropped grown peanut increased significantly compared to those in monocropping in the greenhouse experiment, and different intercropping treatments generally increased the Zn and Cu content in the shoot of peanut in the field. Systemic mechanisms may be involved in adaptation to nutrient stresses at the whole plant level. The study suggests that a reasonable intercropping system of nutrient efficient species should be considered to prevent or mitigate iron and zinc deficiency of plants in agricultural practice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号