首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   1篇
  国内免费   6篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2014年   1篇
  2013年   6篇
  2012年   1篇
  2011年   13篇
  2009年   4篇
  2008年   6篇
  2007年   2篇
  2006年   3篇
  2005年   6篇
  2004年   8篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   8篇
  1998年   3篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   5篇
  1992年   8篇
  1991年   5篇
  1990年   11篇
  1989年   3篇
  1988年   10篇
  1987年   9篇
  1986年   9篇
  1985年   2篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1979年   2篇
  1978年   3篇
排序方式: 共有174条查询结果,搜索用时 46 毫秒
1.
2.
Methanobacterium sp. Mb1, a hydrogenotrophic methanogenic Archaeon, was isolated from a rural biogas plant producing methane-rich biogas from maize silage and cattle manure in Germany. Here we report the complete genome sequence of the novel methanogenic isolate Methanobacterium sp. Mb1 harboring a 2,029,766 bp circular chromosome featuring a GC content of 39.74%. The genome encodes two rRNA operons, 41 tRNA genes and 2021 coding sequences and represents the smallest genome currently known within the genus Methanobacterium.  相似文献   
3.
Citrate is an important component of metal processing effluents such as chemical mechanical planarization wastewaters of the semiconductor industry. Citrate can serve as an electron donor for sulfate reduction applied to promote the removal of metals, and it can also potentially be used by methanogens that coexist in anaerobic biofilms. The objective of this study was to evaluate the degradation of citrate with sulfate-reducing and methanogenic biofilms. During batch bioassays, the citrate, acetate, methane and sulfide concentrations were monitored. The results indicate that independent of the biofilm or incubation conditions used, citrate was rapidly fermented with specific rates ranging from 566 to 720 mg chemical oxygen demand (COD) consumed per gram volatile suspended solids per day. Acetate was found to be the main fermentation product of citrate degradation, which was later degraded completely under either methanogenic or sulfate reducing conditions. However, if either sulfate reduction or methanogenesis was infeasible due to specific inhibitors (2-bromoethane sulfonate), absence of sulfate or lack of adequate microorganisms in the biofilm, acetate accumulated to levels accounting for 90–100% of the citrate-COD consumed. Based on carbon balances measured in phosphate buffered bioassays, acetate, CO2 and hydrogen are the main products of citrate fermentation, with a molar ratio of 2:2:1 per mol of citrate, respectively. In bicarbonate buffered bioassays, acetogenesis of H2 and CO2 increased the yield of acetate. The results taken as a whole suggest that in anaerobic biofilm systems, citrate is metabolized via the formation of acetate as the main metabolic intermediate prior to methanogenesis or sulfate reduction. Sulfate reducing consortia must be enriched to utilize acetate as an electron donor in order to utilize the majority of the electron-equivalents in citrate.  相似文献   
4.
厌氧消化酸抑制研究进展   总被引:4,自引:1,他引:3  
厌氧消化工艺目前已广泛应用于各类废水的处理处置过程中,但在实际运行中,受消化条件和物料性质的影响,消化系统经常遭受由挥发性脂肪酸积累过多导致的酸抑制问题,引发产气量下降、产甲烷率降低等问题。近年来,有研究者发现,挥发性脂肪酸的种类和浓度及pH、温度是影响酸抑制的主要因素。基于此,相关研究者分别尝试了添加碱性化学药剂和微量元素及利用生物强化技术与微生物电化学技术来解除酸抑制的尝试,并都取得了不错的效果。本文综述了厌氧消化过程中酸抑制的产生过程、抑制机理及恢复方法,以期为解决厌氧消化酸抑制问题提供参考。  相似文献   
5.
Strain SBT is a new, strictly anaerobic, gram-negative, nonmotile, non-sporeforming, rod-shaped bacterium that degrades benzoate and certain fatty acids in syntrophic association with hydrogen/formate-using microorganisms. Strain SBT produced approximately 3 mol of acetate and 0.6 mol of methane per mol of benzoate in coculture with Methanospirillum hungatei strain JF1. Saturated fatty acids, some unsaturated fatty acids, and methyl esters of butyrate and hexanoate also supported growth of strain SBT in coculture with Desulfovibrio strain G11. Strain SBT grew in pure culture with crotonate, producing acetate, butyrate, caproate, and hydrogen. The molar growth yield was 17 ± 1 g cell dry mass per mol of crotonate. Strain SBT did not grow with fumarate, iron(III), polysulfide, or oxyanions of sulfur or nitrogen as electron acceptors with benzoate as the electron donor. The DNA base composition of strain SBT was 43.1 mol% G+C. Analysis of the 16 S rRNA gene sequence placed strain SBT in the δ-subdivision of the Proteobacteria, with sulfate-reducing bacteria. Strain SBT was most closely related to members of the genus Syntrophus. The clear phenotypic and genotypic differences between strain SBT and the two described species in the genus Syntrophus justify the formation of a new species, Syntrophus aciditrophicus. Received: 2 June 1998 / Accepted: 16 November 1998  相似文献   
6.
A new species of anaerobic bacterium that degrades the even-numbered carbon fatty acids, butyrate, caproate and caprylate, to acetate and H2 and the odd-numbered carbon fatty acids, valerate and heptanoate, to acetate, propionate and H2 was obtained in coculture with either an H2-utilizing methanogen or H2-utilizing desulfovibrio. The organism could be grown only in syntrophic association with the H2-utilizer and no other energy sources or combination of electron donor and acceptors were utilized. It was a Gram-negative helical rod with 2 to 8 flagella, about 20 nm in diameter, inserted in a linear fashion about 130 nm or more apart along the concave side of the cell. It grew with a generation time of 84 h in co-culture with Methanospirillum hungatii and was present in numbers of at least 4.5×10-6 per g of anaerobic digestor sludge.  相似文献   
7.
A laboratory-scale upflow anaerobic sludge bed (UASB) reactor was operated during 273 days at increasing NaCl concentrations (0.5–12.5 g NaCl l–1) to assess whether the stepwise addition of the salt NaCl results in the acclimation of that sludge. The 6.5-l thermophilic (55 °C), sulfidogenic [a chemical oxygen demand (COD) to SO42– ratio of 0.5] UASB reactor operated at an organic loading rate of 5 g COD l–1 day–1, a hydraulic retention time of 10 h and was fed with methanol as the sole electron donor. The results show that the adaptation of the thermophilic, sulfidogenic methanol-degrading biomass to a high osmolarity environment is unlikely to occur. Sulfide was the main mineralization product from methanol degradation, regardless of the NaCl concentration added to the influent. However, sulfide production in the reactor steadily decreased after the addition of 7.5 g NaCl l–1, whereas acetate production was stimulated at that influent NaCl concentration. Batch tests performed with sludge harvested from the UASB reactor when operating at different influent salinities confirmed that acetate is the main metabolic product at NaCl concentrations higher than 12.5 g l–1. The apparent order of NaCl toxicity towards the different trophic groups was found to be: sulfate-reducing bacteria > methane-producing archaea > acetogenic bacteria.  相似文献   
8.
Summary Anaerobic microbial communities sampled from either a methanogenic or sulfate-reducing aquifer site have been tested for their ability to degrade a variety of groundwater pollutants, including halogenated aromatic compounds, simple alkyl phenols and tetrachloroethylene. The haloaromatic chemicals were biodegraded in methanogenic incubations but not under sulfate-reducing conditions. The primary degradative event was typically the reductive removal of the aryl halides. Complete dehalogenation of the aromatic moiety was required before substrate mineralization was observed. The lack of dehalogenation activity in sulfatereducing incubations was due, at least in part, to the high levels of sulfate rather than a lack of metabolic potential. In contrast, the degradation of cresol isomers occurred in both types of incubations but proved faster under sulfate-reducing conditions. The requisite microorganisms were enriched and the degradation pathway forp-cresol under the latter conditions involved the anaerobic oxidation of the aryl methyl group. Tetrachloroethylene was also degraded by reductive dehalogenation but under both incubation conditions. The initial conversion of this substrate to trichloroethylene was generally faster under methanogenic conditions. However, the transformation pathway slowed when dichloroethylene was produced and only trace concentrations of vinyl chloride were detected. These results illustrate that pollutant compounds can be biodegraded under anoxic conditions and a knowledge of the predominant ecological conditions is essential for accurate predictions of the transport and fate of such materials in aquifers.  相似文献   
9.
The ethanol-oxidizing, proton-reducing Pelobacter acetylenicus was grown in chemostat cocultures with either Acetobacterium woodii, Methanobacterium bryantii, or Desulfovibrio desulfuricans. Stable steady state conditions with tightly coupled growth were reached at various dilution rates between 0.02 and 0.14 h-1. Both ethanol and H2 steady state concentrations increased with growth rate and were lower in cocultures with the sulfate reducer < methanogen < homoacetogen. Due to the higher affinity for H2, D. desulfuricans outcompeted M. bryantii, and this one A. woodii when inoculated in cocultures with P. acetylenicus. Cocultures with A. woodii had lower H2 steady state concentrations when bicarbonate reduction was replaced by the energetically more favourable caffeate reduction. Similarly, cocultures with D. desulfuricans had lower H2 concentrations with nitrate than with sulfate as electron acceptor. The Gibbs free energy (G) available to the H2-producing P. acetylenicus was independent of growth rate and the H2-utilizing partner, whereas the G available to the latter increased with growth rate and the energy yielding potential of the H2 oxidation reaction. The critical Gibbs free energy (Gc), i.e. the minimum energy required for H2 production and H2 oxidation, was-5.5 to-8.0 kJ mol-1 H2 for P. acetylenicus,-5.1 to-6.3 kJ mol-1 H2 for A. woodii,-7.5 to-9.1 kJ mol-1 H2 for M. bryantii, and-10.3 to-12.3 kJ mol-1 H2 for D. desulfuricans. Obviously, the potentially available energy was used more efficiently by homoacetogens > methanogens > sulfate reducers.  相似文献   
10.
Summary The continuously operated suspended growth anaerobic contact system was utilized to estimate the effect of sulfate reduction on the thermophilic (55°C) methane fermentation process. Results indicated that reduction in methanogenesis in the presence of sulfate was due to two separate, but related, processes;i.e. competitive and sulfide inhibition. Although prevention of competitive inhibition would be difficult under normal fermenter operation, sulfide inhibition could be minimized by environmental selection of sulfide tolerant microbial populations through biomass recycle and pH control. Stable fermenter operation was achieved at soluble sulfide concentrations as high as 330 mg/l soluble sulfide. Using batch fermenters, a maximum thermophilic sulfate reduction rate of 3.7 mg SO4 2––S/g volatile solids (VS)-day was estimated. The importance of reporting sulfate reduction rates on a biomass basis is demonstrated by a simple population adjustment kinetic model.This research study was conducted at the Department of Agricultural Engineering, Cornell University, Riley Robb Hall, Ithaca, NY 14853, U.S.A.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号