首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   2篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   9篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   12篇
  2008年   6篇
  2007年   8篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
排序方式: 共有65条查询结果,搜索用时 171 毫秒
1.
Intestinal cancer is a disease with high morbidity and high mortality in China. Previous studies have shown that Codonopsis foetens can inhibit cellular autophagy and promote the apoptosis of intestine cancer cells. Based on metabolomics method coupled with liquid chromatography-mass spectrometry (LC-MS) technology, we aimed to analyze intestinal small molecule metabolites in the intestinal cancer model group and the Codonopsis foetens treated group. Principal component analysis (PCA) and Partial Least Squares (PLS-DA) were used to identify the pattern of the data. And the metabolic characteristics of the cancer model group were explored based on the metabolic differences between the groups. Multivariate statistical analysis revealed that metabolites presented with differences included: Acetamide, Phosphoric acid, Hydrogen sulfite, Pyruvic acid, Cytosine, 2-Hydroxypyridine, Phosphoric acid, Uracil, Gamma-Aminobutyric acid, Glycerol alpha-monochlorohydrin, Thiosulfic acid, L-Valine, Cysteamine, Taurine, Creatine, Homocysteine, Hypoxanthine, Se-Methylselenocysteine, 5-Hydroxymethyluracil, Oxoglutaric acid, LysoPC(20:0), LysoPC(22:4(7Z,10Z,13Z,16Z)), LysoPC(18:2(9Z,12Z)), LysoPC(16:1(9Z)), LysoPE(0:0/16:0), LysoPE(0:0/18:2(9Z,12Z)), LysoPE(18:0/0:0), LysoPE(20:1(11Z)/0:0), etc. Combined with metabolic pathway analysis, pathways presented with differences included: Citrate cycle (TCA cycle), ABC transporters, 2-Oxocarboxylic acid metabolism, Taurine and hypotaurine metabolism, Butanoate metabolism), Phenylalanine, tyrosine and tryptophan biosynthesis, Biosynthesis of amino acids, Protein digestion and absorption, Aminoacyl-tRNA biosynthesis, C5-Branched dibasic acid metabolism, GABAergic synapse, Proximal tubule bicarbonate reclamation, Mineral absorption, Phenylalanine metabolism. The results showed that the proliferation of intestinal cancer cells caused cell metabolism disorders, manifesting as changes in metabolic pathways and resulting in changes in metabolites.  相似文献   
2.
Pancreatic islet β cell tumor is the most common islet cell tumor. A well-characterized tumor progression in Rip1-Tag2 mice undergoes five stages, involving normal, hyperplasia, angiogenic islets, tumorigenesis and invasive carcinoma. 1H NMR based metabonomics was applied to identify potential biomarkers for monitoring pancreatic islet β cell tumor progression in Rip1-Tag2 mice. Multivariate analysis results showed the serum metabonome at hyperplasia stage shared the similar characteristics with the ones at normal stage as a result of slight proliferation of pancreatic islet β cells. At angiogenic islets stage, the up-regulated glycolysis, disturbed choline and phospholipid metabolism composed the metabolic signature. In addition to the changes mentioned above, several metabolites were identified as early biomarkers for tumorigenesis, including increased methionine, citrate and choline, and reduced acetate, taurine and glucose, which suggested the activated energy and amino acid metabolism. All the changes were aggravated at invasive carcinoma stage, coupled with notable changes in alanine, glutamate and glycine. Moreover, the distinct metabolic phenotype was found associated with the implanting of SV40 large T antigen in Rip1-Tag2 mice. The combined metabolic and multivariate statistics approach provides a robust method for screening the biomarkers of disease progression and examining the association between gene and metabolism.  相似文献   
3.
Currently there is a surge of interest in exploiting toxicogenomics to screen the toxicity of chemicals, enabling rapid and accurate categorisation into classes of defined mode-of-action (MOA), and prioritising chemicals for further testing. Direct infusion FT-ICR mass spectrometry-based metabolomics can provide a sensitive and unbiased analysis of metabolites in only 15 mins and therefore has considerable potential for chemical screening. The water flea, Daphnia magna, is an OECD test species and is utilised internationally for toxicity testing. However, no metabolomics studies of this species have been reported. Here we optimised and evaluated the effectiveness of FT-ICR mass spectrometry metabolomics for toxicity testing in D. magna. We confirmed that high-quality mass spectra can be recorded from as few as 30 neonates (<24 h old; 224 μg dry mass) or a single adult daphnid (301 μg dry mass). An OECD 24 h acute toxicity test was conducted with neonates at copper concentrations of 0, 5, 10, 25, 50 μg l−1. A total of 5447 unique peaks were detected reproducibly, of which 4768 were assigned at least one empirical formula and 1017 were putatively identified based upon accurate mass measurements. Significant copper-induced changes to the daphnid metabolome, consistent with the documented MOA of copper, were detected thereby validating the approach. In addition, N-acetylspermidine was putatively identified as a novel biomarker of copper toxicity. Collectively, our results highlight the excellent sensitivity, reproducibility and mass accuracy of FT-ICR mass spectrometry, and provide strong evidence for its applicability to high-throughput screening of chemical toxicity in D. magna. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
4.
The traditional Chinese medicine concepts of “Xinxueyuzuzheng (heart blood stasis obstruction pattern)” and “Qiyinliangxuzheng (qi and yin deficiency pattern)” for myocardial ischemia rat models were constructed in the present study. Endogenous metabolites in rat plasma were analyzed using the GC/TOF-MS-based metabonomic method. Significant metabolic differences were observed between the control and two model groups, and the three groups were distinguished clearly by pattern recognition. Compared with those of the control, the levels of hydroxyproline, threonic acid, glutamine and citric acid were strikingly up- or down-regulated in model rats. The metabolites contributing most to the classification between the two “pattern” rats were identified, such as valine, serine, threonine, ornithine, hydroxyproline, lysine, 2-hydroxybutanoic acid, 3-hydroxybutanoic acid, galactofuranose and inositol. These compounds were indicated as the potential biomarkers. The results suggested that the two “patterns” are involved in dysfunction in oxidative stress, energy metabolism and amino acid metabolism. These findings also provided the substantial foundation for exploring the scientific connotation of these two “Zhengxing (pattern types)” of myocardial ischemia, and “Bianzheng (pattern identification)”.  相似文献   
5.
This study identified two potential novel biomarkers of peroxisome proliferation in the rat. Three peroxisome proliferator-activated receptor (PPAR) ligands, chosen for their high selectivity towards the PPARα, -δ and -γ subtypes, were given to rats twice daily for 7 days at doses known to cause a pharmacological effect or peroxisome proliferation. Fenofibrate was used as a positive control. Daily treatment with the PPARα and -δ agonists produced peroxisome proliferation and liver hypertrophy. 1H nuclear magnetic resonance spectroscopy and multivariate statistical data analysis of urinary spectra from animals given the PPARα and -δ agonists identified two new potential biomarkers of peroxisome proliferation - N-methylnicotinamide (NMN) and N-methyl-4-pyridone-3-carboxamide (4PY) - both endproducts of the tryptophan-nicotinamide adenine dinucleotide (NAD+) pathway. After 7 days, excretion of NMN and 4PY increased 24- and three-fold, respectively, following high doses of fenofibrate. The correlation between total NMN excretion over 7 days and the peroxisome count was r=0.87 (r2=0.76). Plasma NMN, measured using a sensitive high performance liquid chromatography method, was increased up to 61-fold after 7 days' treatment with high doses of fenofibrate. Hepatic gene expression of aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) was downregulated following treatment with the PPARα and -δ agonists. The decrease was up to 11-fold compared with controls in the groups treated with high doses of fenofibrate. This supports the link between increased NMN and 4PY excretion and regulation of the tryptophan-NAD+ pathway in the liver. In conclusion, NMN, and possibly other metabolites in the pathway, are potential non-invasive surrogate biomarkers of peroxisome proliferation in the rat.  相似文献   
6.
During a scientific workshop the use of biological monitoring in characterization of retrospective exposure assessment was discussed. The workshop addressed currently available methodology and also novel approaches such as in different fields of ‘omics’. For use in epidemiology requiring retrospective exposure assessment, biomarker levels should not vary too much over time. If variability in exposure over time is large and differences in exposure between individuals are relatively small, this may lead to underestimation of the exposure–response relationship. This means that, for a sound assessment of health risk, biomarkers that reflect cumulative exposure over a long period of time are preferred over biomarkers with short half-lives. Most of the existing biomarkers such as metabolites in body fluids usually have rather short half-lives, typically less than 1–2 days. Some adducts to DNA show somewhat longer half-lives. The current limit to persistence of biomarkers reflecting cumulative exposure over time is from adducts to haemoglobin with a half-life of 4 months. Some specific organic substances may be more persistent due to storage in adipose tissue or metals in kidneys, nails and hair. The metabonomics, proteomics and present gene expression profiling approaches do not provide a perspective to the availability of more persistent biomarkers and most approaches discussed to date show that it is difficult to interpret study outcomes in terms of exposure to a specific xenobiotic factor. Research efforts should focus on improvement and validation of currently available approaches in the field of addition products to DNA and proteins. Promising new developments may be phosphotriester DNA adducts and adducts to more long-lived proteins such as histones.  相似文献   
7.
In this article we present the activities of the Ontology Working Group (OWG) under the Metabolomics Standards Initiative (MSI) umbrella. Our endeavour aims to synergise the work of several communities, where independent activities are underway to develop terminologies and databases for metabolomics investigations. We have joined forces to rise to the challenges associated with interpreting and integrating experimental process and data across disparate sources (software and databases, private and public). Our focus is to support the activities of the other MSI working groups by developing a common semantic framework to enable metabolomics-user communities to consistently annotate the experimental process and to enable meaningful exchange of datasets. Our work is accessible via a public webpage and a draft ontology has been posted under the Open Biological Ontology umbrella. At the very outset, we have agreed to minimize duplications across omics domains through extensive liaisons with other communities under the OBO Foundry. This is work in progress and we welcome new participants willing to volunteer their time and expertise to this open effort. See the MSI Ontology Working Group website for a complete list of members and contributors. Web URL:  相似文献   
8.
9.
Proton (1H) Nuclear Magnetic Resonance (NMR) spectroscopy was used to investigate the biochemical response of bank voles and wood mice (two wild rodent species frequently found on metal-contaminated sites) to chronic cadmium (Cd) insult. Similar effects, in terms of both metabolic changes (consistent with cellular acidosis) and induced metallothionin (MT) production were observed in all animals. These changes appeared to be an adaptation of the liver to toxic insult rather than onset of a toxic effect, and, in common with previous studies, were more marked in bank voles than wood mice. This may have reflected the greater Cd intake and assimilation of the former but was not explained by differences in concentrations of free (non MT-bound) Cd; concentrations of which were negligible in both voles and mice. Responses to Cd insult were detected in both species even though their bodies contained cadmium concentrations well below the World Health Organisation critical renal concentration of 200 μg/g dry mass.  相似文献   
10.
Metabolic phenotyping, or metabotyping, is increasingly being used as a probe in functional genomics studies. However, such profiling is subject to intrinsic physiological variation found in all animal populations. Using a nuclear magnetic resonance-based metabonomic approach, we show that diurnal variations in metabolism can obscure the interpretation of strain-related metabolic differences in two phenotypically normal mouse strains (C57BL10J and Alpk:ApfCD). To overcome this problem, diurnal-related metabolic variation was removed from these spectral data by application of orthogonal signal correction (OSC), a data filtering method. Interpretation of the removed orthogonal variation indicated that diurnal-related variation had been removed and that the AM samples contained higher levels of creatine, hippurate, trimethylamine, succinate, citrate and 2-oxo-glutarate and lower levels of taurine, trimethylamine-N-oxide, spermine and 3-hydroxy-iso-valerate relative to the PM samples. We propose OSC will have great potential removing confounding variation obscuring subtle changes in metabolism in functional genomic studies and will be of benefit to optimising interpretation of proteomic and genomic datasets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号