首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2014年   1篇
  2012年   1篇
  1988年   1篇
排序方式: 共有3条查询结果,搜索用时 656 毫秒
1
1.
Control over ionic composition and volume of the inner ear luminal fluid endolymph is essential for normal hearing and balance. Mice deficient in either the EphB2 receptor tyrosine kinase or the cognate transmembrane ligand ephrin-B2 (Efnb2) exhibit background strain-specific vestibular-behavioral dysfunction and signs of abnormal endolymph homeostasis. Using various loss-of-function mouse models, we found that Efnb2 is required for growth and morphogenesis of the embryonic endolymphatic epithelium, a precursor of the endolymphatic sac (ES) and duct (ED), which mediate endolymph homeostasis. Conditional inactivation of Efnb2 in early-stage embryonic ear tissues disrupted cell proliferation, cell survival, and epithelial folding at the origin of the endolymphatic epithelium. This correlated with apparent absence of an ED, mis-localization of ES ion transport cells relative to inner ear sensory organs, dysplasia of the endolymph fluid space, and abnormally formed otoconia (extracellular calcite-protein composites) at later stages of embryonic development. A comparison of Efnb2 and Notch signaling-deficient mutant phenotypes indicated that these two signaling systems have distinct and non-overlapping roles in ES/ED development. Homozygous deletion of the Efnb2 C-terminus caused abnormalities similar to those found in the conditional Efnb2 null homozygote. Analyses of fetal Efnb2 C-terminus deletion heterozygotes found mis-localized ES ion transport cells only in the genetic background exhibiting vestibular dysfunction. We propose that developmental dysplasias described here are a gene dose-sensitive cause of the vestibular dysfunction observed in EphB–Efnb2 signaling-deficient mice.  相似文献   
2.
Estuaries of tropical developing countries suffering from severe droughts induced by climate change are habitats to fish, which face drastic salinity variations and the contact with pollutants. The Western Africa tilapia Sarotherodon melanotheron is highly resistant to hypersalinity, but the effect of human-released xenobiotics on its adaptation is barely known. Controlled experiments were conducted to observe S. melanotheron gill adaptation to abrupt salinity variations in the presence of waterborne DDT, at concentrations detected in their natural habitat. The gills appeared as an important site of DDT conversion to DDD and/or depuration. A 12-days DDT exposure resulted in decreased gill epithelium thickness at all salinities (from fresh- to hypersaline-water), and the structure of gills from freshwater fish was particularly altered, relative to controls. No unbalance in tilapia blood osmolality was observed following DDT exposure, which however caused a decrease in branchial Na(+)-K(+)-ATPase (NKA) activity. Gill cellular NKA expression was reduced in salt-water, together with the expression of the CFTR chloride channel in hypersaline water. Although S. melanotheron seems very resistant (especially in seawater) to short-term waterborne DDT contamination, the resulting alterations of the gill tissue, cells and enzymes might affect longer term respiration, toxicant depuration and/or osmoregulation in highly fluctuating salinities.  相似文献   
3.
Fibronectin (FN) localizations in the epidermal cells of the frog Rana esculenta were detected in isolated ventral skin fragments 4 day-cultured with or without an NaCl transepithelial gradient and aldosterone. Without the gradient, few mitochondria-rich cells (MRCs) were FN-detected. Stratum germinativum and spinosum cells also contained fibronectin. With the gradient, numerous MRCs were detected. Below them, in the stratum germinativum, clear spaces were recognized. Aldosterone with or without the gradient modified the above effects: in both cases, many MRC contained fibronectin. It was interesting to note that, for each type of culture, stratum germinativum cells were dramatically FN-detected.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号