首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   4篇
  国内免费   11篇
  2024年   1篇
  2023年   1篇
  2021年   4篇
  2020年   4篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   8篇
  2012年   6篇
  2011年   7篇
  2010年   6篇
  2009年   8篇
  2008年   9篇
  2007年   24篇
  2006年   15篇
  2005年   10篇
  2004年   11篇
  2003年   15篇
  2002年   9篇
  2001年   9篇
  2000年   8篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1983年   1篇
排序方式: 共有181条查询结果,搜索用时 62 毫秒
1.
Abstract

In Arabidopsis thaliana, cell fate in developing ovules is determined by the action of the homeodomain factor BELL1 (BEL1) and of the MADS-box factors SEEDSTICK (STK), SHATTERPROOF1 (SHP1) and SHP2. The analysis of the bel1 and the stk shp1 shp2 mutants revealed that the functional megaspore is formed, however, it does not proceed into megagametogenesis. In the bel1 stk shp1 shp2, quadruple mutant megasporogenesis does not take place. In this article we describe a detailed morphological analysis of the quadruple mutant, and we discuss the possibility that BELL1, STK, SHP1 and SHP2 not only control integument identity determination and development, but that they might also play a role during megasporogenesis.  相似文献   
2.
3.
野生小花草玉梅(Anemone rivularis var.flore-minore)正常植株和花被片自然变异植株的外观形态差异很大,该研究以二者为材料,利用常规PCR和高效热不对称PCR(Hi-Tail PCR)技术从其正常和变异植株的基因组中各分离得到1个B类基因。序列分析证明,二者隶属于B类MADS-box基因AP3家族的旁系同源基因AP3-3分枝,分别命名为NArAP3-3(正常植株)和VArAP3-3(变异植株)。NArAP3-3基因全长3 795bp,VArAP3-3基因全长3 898bp,二者均含有1个666bp的开放阅读框(ORF),可编码221个氨基酸,具有典型的植物MADS-box基因结构,其编码肽链包含了MADS区、K区、Ⅰ区和C区。对比NArAP3-3和VArAP3-3基因的全长序列,发现VArAP3-3基因比NArAP3-3多了1段49bp的插入,且在ORF序列与NArAP3-3基因相比有4个碱基突变。对二者的全长序列、所编码的221个氨基酸及插入序列的生物信息学分析显示,二者在基因启动子、蛋白质基本性质、结构功能域、二级三级预测结构等方面均有差异,推测这些差异可能是花被片变异产生的原因之一。该研究结果为进一步探索其变异机制奠定了基础。  相似文献   
4.
In the attempt to discover new genes involved in the floral development in monoeotyledonousin species,we have cloned and characterized the homologous PISTALLATA-like (PI-like) gone from Phalaenopsis hybrid cultivar named PhPI9 (Phalaenopsis PI STILLATA # 9).The eDNA of PhPI9 has a fragment of 834 bp and has 60% identity with the PISTILATA from Arabidopsis.The deduced amino acid sequence of PhPI9 had the typical PI-motif.It also formed a subelade with other monoeot PI-type genes in phylogenetie analysis.Southern analysis showed that PhPI9 was present in the Phalaenopsis orchid genome as a single copy.Furthermore,it was expressed only in the lip of the Phalaenopsis flower and no expression was detected in vegetative organs.Thus,as a B-function MADS-box gone,PhP19 specifies floral organ identity in orchids.  相似文献   
5.
Survey of transposable elements from rice genomic sequences   总被引:27,自引:0,他引:27  
Oryza sativa L. (domesticated rice) is a monocotyledonous plant, and its 430 Mb genome has been targeted for complete sequencing. We performed a high-resolution computer-based survey for transposable elements on 910 Kb of rice genomic DNA sequences. Both class I and II transposable elements were present, contributing 19.9% of the sequences surveyed. Class II elements greatly outnumbered class I elements (166 versus 22), although class I elements made up a greater percentage (12.2% versus 6.6%) of nucleotides surveyed. Several Mutator-like elements (MULEs) were identified, including rice elements that harbor truncated host cellular genes. MITEs (miniature inverted-repeat transposable elements) account for 71.6% of the mined transposable elements and are clearly the predominant type of transposable element in the sequences examined. Moreover, a putative Stowaway transposase has been identified based on shared sequence similarity with the mined MITEs and previously identified plant mariner-like elements (MLEs). Members of a group of novel rice elements resembling the structurally unusual members of the Basho family in Arabidopsis suggest a wide distribution of these transposons among plants. Our survey provides a preview of transposable element diversity and abundance in rice, and allows for comparison with genomes of other plant species.  相似文献   
6.
7.
FLOWERING LOCUS M (FLM) is a MADS-domain gene that acts as an inhibitor of flowering in Arabidopsis. Here we describe the genetic interaction of FLM with genes in the photoperiod and autonomous flowering pathways. Although the sequence of FLM is most similar to that of FLC, FLM and FLC interact with different flowering pathways. It has been previously shown that flc lesions suppress the late-flowering phenotype of FRI-containing lines and autonomous-pathway mutants. However, flm lesions suppress the late-flowering phenotype of photoperiod-pathway mutants but not that of FRI-containing lines or autonomous-pathway mutants. Another MADS-domain flowering repressor with a mutant phenotype similar to FLM is SVP. The late-flowering phenotype of FLM over-expression is suppressed by the svp mutation, and an svp flm double mutant behaves like the single mutants. Thus FLM and SVP are in the same flowering pathway which interacts with the photoperiod pathway. Abbreviations: CO, CONSTANS; FLC, FLOWERING LOCUS C; FLM, FLOWERING LOCUS M; FRI, FRIGIDA; GI, GIGANTEA; LD, LUMINIDEPENDENS; SVP, SHORT VEGETATIVE PHASE; FCA is not an abbreviation  相似文献   
8.
One of the great unanswered questions in the biology of both plants and animals is “How do simple groups of embryonic cells develop into complex and highly structured organisms, or parts of organisms?” The answers are only beginning to be known; the processes involved include establishment of positional information, and its interpretation into patterns of cell division and cellular differentiation. One remarkable and attractive example of the formation of a complex structure from a simple group of cells is the development of a flower, with its characteristic types, numbers and patterns of floral organs. Because of the ease with which plants (especially the plantArabidopsis thaliana) can be manipulated in the laboratory, flowers provide a unique opportunity to learn some of the fundamental rules of development.  相似文献   
9.
EMBRYONIC FLOWER (EMF) genes are required to maintain vegetative development via repression of flower homeotic genes in Arabidopsis. Removal of EMF gene function caused plants to flower upon germination, producing abnormal and sterile flowers. The pleiotropic effect of ernfl mutation suggests its requirement for gene programs involved in diverse developmental processes. Transgenic plants harboring EMF1 promoter::glucuronidase (GUS) reporter gene were generated to investigate the temporal and spatial expression pattern of EMF1. These plants displayed differential GUS activity in vegetative and flower tissues, consistent with the role of EMF1 in regulating multiple gene programs. EMFI::GUS expression pattern in emf mutants suggests organ-specific auto-regulation. Sense- and antisense (as) EMF1 cDNA were expressed under the control of stage- and tissue-specific promoters in transgenic plants. Characterization of these transgenic plants showed that EMF1 activity is required in meristematic as well as differentiating tissues to rescue emf mutant phenotype. Temporal removal or reduction of EMF1 activity in the embryo or shoot apex of wild-type seedlings was sufficient to cause early flowering and terminal flower formation in adult plants. Such reproductive cell memory is reflected in the flower MADS-box gene activity expressed prior to flowering in these early flowering plants. However, temporal removal of EMF1 activity in flower meristem did not affect flower development. Our results are consistent with EMF1's primary role in repressing flowering in order to allow for vegetative growth.  相似文献   
10.
Homeotic transformation of stamens into pistil-like structures (called pistillody) has been reported in cytoplasmic substitution (alloplasmic) lines of bread wheat (Triticum aestivum) having the cytoplasm of a wild relative species, Aegilops crassa. Our previous studies indicated that pistillody is caused by alterations of the class B MADS-box gene expression pattern associated with mitochondrial gene(s) in the Ae. crassa cytoplasm. To elucidate the nuclear gene involved in the cross-talk between pistillody-related mitochondrial gene(s) and nuclear homeotic genes, we performed cDNA subtraction analysis using cDNAs derived from young spikes of a pistillody line and a normal line. As a result, we identified a protein kinase gene, WPPK1 (wheat pistillody-related protein kinase 1), which is upregulated in the young spikes of the pistillody line. RT-PCR analysis indicated that WPPK1 is strongly expressed in pistils and pistil-like stamens in the pistillody line, suggesting that it is involved in the formation of pistil-like stamens as well as pistils. The full-length cDNA sequence for WPPK1 showed high similarity with a flowering plant PVPK-1 protein kinase, and phylogenetic analysis indicated that it is a member of AGC group protein kinases. Furthermore, a phosphorylation assay indicated that it has protein kinase activity. In situ hybridization analysis revealed that WPPK1 is expressed in developing pistils and pistil-like stamens as well as in their primordia. These indicate that in the alloplasmic line, WPPK1 plays a role in formation and development of pistil-like stamens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号