首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   2篇
  国内免费   14篇
  2023年   2篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   12篇
  2013年   20篇
  2012年   17篇
  2011年   26篇
  2010年   8篇
  2009年   31篇
  2008年   15篇
  2007年   24篇
  2006年   14篇
  2005年   11篇
  2004年   9篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1992年   1篇
  1987年   1篇
  1985年   4篇
  1984年   2篇
  1983年   4篇
  1982年   5篇
  1981年   1篇
排序方式: 共有255条查询结果,搜索用时 41 毫秒
1.
Sequence-specific amplified polymorphism (SSAP) technology is a novel, anchored PCR approach derived from AFLP, which amplifies the region between a transposon insertion and an adjacent restriction site and have higher levels of polymorphism. In the current study, we developed 16 SSAP markers based on the long terminal repeat (LTR) sequences of Ty1-copia retrotransposons in the peach and used them for DNA profiling of 52 individual peaches: 44 peach cultivars and 8 ornamental peaches. These primer combinations produced a total of 1,553 fragments and 1,517 polymorphic bands with a polymorphism percentage of 97.7%. Furthermore, the Shannon's information index of each primer combination ranged from 0.1593 to 0.4456. Neighbor-joining analyses revealed two main genetic clusters, corresponding to the fruit flesh types: (A-1) MF (melting flesh) with clingstone and ornamental peaches; (A-2) MF with freestone and NMF (non-melting flesh) with clingstone. Finally, cluster analyses revealed that all ornamental peaches are closely related to the MF with clingstone peach cultivars. The application of these primer combinations identified using SSAP will facilitate future cultivar identification and germplasm management in peaches.  相似文献   
2.
3.
Improved knowledge of genome composition, especially of its repetitive component, generates important information for both theoretical and applied research. The olive repetitive component is made up of two main classes of sequences: tandem repeats and retrotransposons (REs). In this study, we provide characterization of a sample of 254 unique full-length long terminal repeat (LTR) REs. In the sample, Ty1-Copia elements were more numerous than Ty3-Gypsy elements. Mapping a large set of Illumina whole-genome shotgun reads onto the identified retroelement set revealed that Gypsy elements are more redundant than Copia elements. The insertion time of intact retroelements was estimated based on sister LTR’s divergence. Although some elements inserted relatively recently, the mean insertion age of the isolated retroelements is around 18 million yrs. Gypsy and Copia retroelements showed different waves of transposition, with Gypsy elements especially active between 10 and 25 million yrs ago and nearly inactive in the last 7 million yrs. The occurrence of numerous solo-LTRs related to isolated full-length retroelements was ascertained for two Gypsy elements and one Copia element. Overall, the results reported in this study show that RE activity (both retrotransposition and DNA loss) has impacted the olive genome structure in more ancient times than in other angiosperms.  相似文献   
4.
The genomes of many species are crowded with repetitive mobile sequences. In the case of endogenous retroviruses (ERVs) there is, for various reasons, considerable confusion regarding names assigned to families/groups of ERVs as well as individual ERV loci. Human ERVs have been studied in greater detail, and naming of HERVs in the scientific literature is somewhat confusing not just to the outsider. Without guidelines, confusion for ERVs in other species will also probably increase if those ERVs are studied in greater detail. Based on previous experience, this review highlights some of the problems when naming and classifying ERVs, and provides some guidance for detecting and characterizing ERV sequences. Because of the close relationship between ERVs and exogenous retroviruses (XRVs) it is reasonable to reconcile their classification with that of XRVs. We here argue that classification should be based on a combination of similarity, structural features, (inferred) function, and previous nomenclature. Because the RepBase system is widely employed in genome annotation, RepBase designations should be considered in further taxonomic efforts. To lay a foundation for a phylogenetically based taxonomy, further analyses of ERVs in many hosts are needed. A dedicated, permanent, international consortium would best be suited to integrate and communicate our current and future knowledge on repetitive, mobile elements in general to the scientific community.  相似文献   
5.
6.
Salt cress (Thellungiella halophila) has become a desirable plant model for molecular analysis of the mechanisms of salt tolerance. Analysis of its physiological action and expressed EST has resulted in better understanding. However, less is known about its genomic features. Here we determined a continuous sequence approximately 83 kb from a salt cress BAC clone, providing the first insight into the genomic feature for this species. The gene density is approximately one gene per 3.6 kb in this sequence. Many types of repetitive sequences are present in this salt cress sequence, including LTR retroelements, DNA transposons and a number of simple sequence repeats. Comparison of sequence similarity indicated that salt cress shares a close relationship with Arabidopsis. Extensive conservation and high-level microcolinearity were uncovered for both genomes. Our study also indicated that genomic DNA alternations (involving chromosome inversion, sequence loss and gene translocation) contributed to the genomic discrepancies between salt cress and Arabidopsis.  相似文献   
7.
8.
参照国外发表的禽网状内皮组织增生病病毒(REV)5’长末端重复序列(LTR)在禽痘病毒(FPV)疫苗株基因组上的整合位点及相关序列,合成一对来自FPV的引物,从国内5个不同厂家生产的禽痘疫苗中经PCR均扩增到REV-5’LTR。通过序列比较发现,我国5个FPV疫苗毒株中REV-5’LTR整合位点与美国和澳大利亚的天然重组禽痘疫苗完全一致。其中,有3个的REV-5’LTR插入序列也与美国的Vac-3-Am株和澳大利亚的Vac-M3-Au株有100%的同源性。另2个中国疫苗毒株中的REV.LTR插入序列与美国疫苗毒株Vac-1-A。中的REV-LTR插入序列有99.6%的同源性。但是,这5个中国禽痘疫苗毒株中整合的REVLTR与中国近年分离到的REV野毒株HA9901的5’LTR的同源性只有75.4%-92.4%。  相似文献   
9.
Long terminal repeat (LTR) retrotransposons are predominant mobile elements that play important roles in plant genome evolution. Here, we isolated the first putative complete Ty1/copia-like retrotransposon of 6303 bp in mangrove Rhizophora apiculata, named RARE-1. RARE-1 was homologous to the soybean retroelement 1 (SORE-1) and exhibited abundant cis-regulatory motifs involved in various stress responses in its LTRs. Using the sequence-specific amplification polymorphism (S-SAP) technique, we obtained a total of 112 bands for two R. apiculata populations from Hainan, China and Ranong, Thailand. The Hainan population showed slightly higher S-SAP polymorphism but fewer unique bands than the Ranong population. Moreover, the Hainan population also had significantly more copies of RARE-1 than the Ranong population as revealed by quantitative real-time PCR (qPCR). Our results suggested that RARE-1 might have been domesticated in the R. apiculata genome, as a result of the long-term evolution of mangroves under the extreme environment.  相似文献   
10.

Background and Aims

Although monocotyledonous plants comprise one of the two major groups of angiosperms and include >65 000 species, comprehensive genome analysis has been focused mainly on the Poaceae (grass) family. Due to this bias, most of the conclusions that have been drawn for monocot genome evolution are based on grasses. It is not known whether these conclusions apply to many other monocots.

Methods

To extend our understanding of genome evolution in the monocots, Asparagales genomic sequence data were acquired and the structural properties of asparagus and onion genomes were analysed. Specifically, several available onion and asparagus bacterial artificial chromosomes (BACs) with contig sizes >35 kb were annotated and analysed, with a particular focus on the characterization of long terminal repeat (LTR) retrotransposons.

Key Results

The results reveal that LTR retrotransposons are the major components of the onion and garden asparagus genomes. These elements are mostly intact (i.e. with two LTRs), have mainly inserted within the past 6 million years and are piled up into nested structures. Analysis of shotgun genomic sequence data and the observation of two copies for some transposable elements (TEs) in annotated BACs indicates that some families have become particularly abundant, as high as 4–5 % (asparagus) or 3–4 % (onion) of the genome for the most abundant families, as also seen in large grass genomes such as wheat and maize.

Conclusions

Although previous annotations of contiguous genomic sequences have suggested that LTR retrotransposons were highly fragmented in these two Asparagales genomes, the results presented here show that this was largely due to the methodology used. In contrast, this current work indicates an ensemble of genomic features similar to those observed in the Poaceae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号