首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2020年   1篇
  2019年   2篇
  2018年   6篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
排序方式: 共有17条查询结果,搜索用时 296 毫秒
1.
Radiation therapy for patients with non‐small‐cell lung cancer is hampered by acute radiation‐induced toxicity in the esophagus. This study aims to validate that optical coherence tomography (OCT), a minimally invasive imaging technique with high resolution (~10 μm), is able to visualize and monitor acute radiation‐induced esophageal damage (ARIED) in mice. We compare our findings with histopathology as the gold standard. Irradiated mice receive a single dose of 40 Gy at proximal and distal spots of the esophagus of 10.0 mm in diameter. We scan mice using OCT at two, three, and seven days post‐irradiation. In OCT analysis, we define ARIED as a presence of distorted esophageal layering, change in backscattering signal properties, or change in the esophageal wall thickness. The average esophageal wall thickness is 0.53 mm larger on OCT when ARIED is present based on histopathology. The overall sensitivity and specificity of OCT to detect ARIED compared to histopathology are 94% and 47%, respectively. However, the overall sensitivity of OCT to assess ARIED is 100% seven days post‐irradiation. We validate the capability of OCT to detect ARIED induced by high doses in mice. Nevertheless, clinical studies are required to assess the potential role of OCT to visualize ARIED in humans.   相似文献   
2.

Purpose

The purpose of this study was to verify whether the dynamic tumor tracking (DTT) feature of a Vero4DRT system performs with 10-mm-long and 0.28 mm diameter gold anchor markers.

Methods

Gold anchor markers with a length of 10 mm and a diameter of 0.28 mm were used. Gold anchor markers were injected with short and long types into bolus material. These markers were sandwiched by a Tough Water (TW) phantom in the bolus material. For the investigation of 4-dimensional (4D) modeling feasibility under various phantom thicknesses, the TW phantom was added at 2 cm intervals (in upper and lower each by 1 cm). A programmable respiratory motion table was used to simulate breathing-induced organ motion, with an amplitude of 30 mm and a breathing cycle of 3 s. X-ray imaging parameters of 80 kV and 125 kV (320 mA and 5 ms) were used. The least detection error of the fiducial marker was defined as the 4D-modeling limitation.

Results

The 4D modeling process was attempted using short and long marker types and its limitation with the short and long types was with phantom thicknesses of 6 and 10 cm at 80 kV and 125 kV, respectively. However, the loss in detectability of the gold anchor because of 4D-modeling errors was found to be approximately 6% (2/31) with a phantom thickness of 2 cm under 125 kV. 4D-modeling could be performed except under the described conditions.

Conclusions

This work showed that a 10-mm-long gold anchor marker in short and long types can be used with DTT for short water equivalent path length site, such as lung cancer patients, in the Vero4DRT system.  相似文献   
3.
PurposeTo present our methods and results regarding the modeling of a carbon fiber couch (Varian Exact IGRT) in the RayStation treatment planning system (TPS).MethodsThree geometrical-models (GMs) were implemented in the TPS to represent the three different regions of the couch (thick, medium and thin). The materials and densities of each GM component were tuned to maximize the agreement between measured and calculated attenuations. Moreover, a couch computed-tomography (CT) scan was acquired and dosimetrically compared with the GMs. For validation, plan-specific quality assurance (QA) of VMAT plans (TG-119 cases, 5 prostate and 5 H&N clinical cases) was performed by comparing measured dose distributions with doses computed with and without including the GMs in the TPS.ResultsCouch attenuations up to 4.3% were measured (energy: 6MV). Compared to couch CT, GMs could be modified to optimize the agreement with measurements and reduce dependence on the dose grid resolution. For both couch CT and GM, absolute deviations between measured and calculated attenuations were within 1.0%. When including the GMs in plan-specific QA, global 2%/2 mm γ-pass rates showed an average improvement of 4.8% (p-value < 0.001, max +18.6%). The couch reduced the mean dose to targets by up to 2.4% of the prescribed dose for prostate cases and up to 1.4% for H&N cases.ConclusionsRayStation accurately considers the implemented couch GMs replicating measured attenuations within an uncertainty of 1.0%. Materials and densities are proposed for the Varian Exact IGRT couch. The results obtained justify introducing couch GMs in clinical routine.  相似文献   
4.
Deep inspiration breath hold (DIBH) is an effective technique to reduce cardiac and pulmonary dose during breast radiotherapy (RT). However, as a result of expense and the technical challenges of program implementation, DIBH has not been widely adopted in clinical practice.This report describes a program for DIBH this is relatively inexpensive to implement and has little impact on patient throughput. Multiple redundant mechanisms are incorporated to assure accurate and safe delivery of RT during DIBH. Laser alignment verifies that chest wall excursion is reliably reproduced and maintained during treatment. Chest wall excursion is also monitored independently using an infrared camera trained on a reflective marker on the chest wall. This system automatically triggers “beam off” in the event of movement of the target beyond pre-determined thresholds. Finally, physician review of cine imaging obtained during treatment provides an off-line verification of accurate RT delivery. The approach described herein lowers the investment necessary for implementation of DIBH and may facilitate broader adoption of this valuable technique.  相似文献   
5.

Aim and background

IGRT based on bone matching may produce a large target positioning error in terms of the reproducibility of expiration breath-holding on SBRT for liver cancer. We evaluated the intrafractional and interfractional errors using the diaphragm position at the end of expiration by utilising Abches and analysed the factor of the interfractional error.

Materials and methods

Intrafractional and interfractional errors were measured using a couple of frontal kV images, planning computed tomography (pCT) and daily cone-beam computed tomography (CBCT). Moreover, max–min diaphragm position within daily CBCT image sets with respect to pCT and the maximum value of diaphragm position difference between CBCT and pCT were calculated.

Results

The mean ± SD (standard deviation) of the intra-fraction diaphragm position variation in the frontal kV images was 1.0 ± 0.7 mm in the C-C direction. The inter-fractional diaphragm changes were 0.4 ± 4.6 mm in the C-C direction, 1.4 ± 2.2 mm in the A-P direction, and ?0.6 ± 1.8 mm in the L-R direction. There were no significant differences between the maximum value of the max–min diaphragm position within daily CBCT image sets with respect to pCT and the maximum value of diaphragm position difference between CBCT and pCT.

Conclusions

Residual intrafractional variability of diaphragm position is minimal, but large interfractional diaphragm changes were observed. There was a small effect in the patient condition difference between pCT and CBCT. The impact of the difference in daily breath-holds on the interfractional diaphragm position was large or the difference in daily breath-holding heavily influenced the interfractional diaphragm change.  相似文献   
6.
PurposeTo investigate the influence of interfractional changes on the delivered dose of intensity modulated proton (IMPT) and photon plans (IMXT).Methods and materialsFive postoperative head and neck cancer patients, previously treated with tomotherapy at our institute, were analyzed. The planning study is based on megavoltage (MV) control images. For each patient one IMPT plan and one IMXT plan were generated on the first MV-CT and recalculated on weekly control MV-CTs in the actual treatment position. Dose criteria for evaluation were coverage and conformity of the planning target volume (PTV), as well as mean dose to parotids and maximum dose to spinal cord.ResultsConsiderable dosimetric changes were observed for IMPT and IMXT plans. Proton plans showed a more pronounced increase of maximum dose and decrease of minimum dose with local underdosage occurring even in the center of the PTV (worst IMPT vs. IMXT coverage: 66.7% vs. 85.0%). The doses to organs at risk (OARs) increased during the treatment period. However, the OAR doses of IMPT stayed below corresponding IMXT values at any time. For both modalities treatment plans did not necessarily worsen monotonically throughout the treatment.ConclusionsAlthough absolute differences between planned and reconstructed doses were larger in IMPT plans, doses to OARs were higher in IMXT plans. Tumor coverage was more stable in IMXT plans; IMPT dose distributions indicated a high risk for local underdosage during the treatment course.  相似文献   
7.
An increasing number of studies show that cancer stem cells become more invasive and may escape into blood stream and lymph nodes before they have received a lethal dose during radiation therapy. Recently, it has been found that graphene oxide (GO) can selectively inhibit the proliferative expansion of cancer stem cells across multiple tumor types. In this study, we investigate the feasibility of using GO during radiotherapy to synergistically inhibit cancer stem cells, and lower the risk of cancer metastasis and recurrence. We hypothesize that graphene oxide nano-flakes (GONFs) released from newly-designed radiotherapy biomaterials (fiducial) can reach targeted tumor cells within 14–21 days. These are the typical time periods between the implantation of the fiducial and the start of image-guided radiation therapy. To test this hypothesis, the spatial-temporal diffusion of GONFs in soft tissue is investigated as a function of different particle sizes. Toxicity of GONFs to normal (HUVEC) and cancer (A549) cells has been assessed using the MTT assay. In addition, the survival fraction of A549 cells treated with GONFs is determined via clonogenic assay during radiotherapy. The diffusion study shows that only GONFs sizes of 50 and 200 nm could achieve the desired concentration of 50 μg/mL for 2 cm diameter tumor after 14 and 21 days respectively. The clonogenic and the MTT assay confirm the additional benefit of GONFs in killing lung cancer cells during radiotherapy. This work avails ongoing in vivo studies that use GONFs to enhance the treatment outcome for cancer patients during radiation therapy.  相似文献   
8.
This publication is a resume of the GOCO Congress (Montpellier 2017). A part of this congress was about the use of MRI in clinical practice, focused on the oncology field. The role of this tool was described in diagnosis, staging of tumors, evaluation of treatment response and the future use in prognostic and investigation (radiomics). After that, in the context of the present and future uses of MRI in radiation oncology, MRI guided radiotherapy was explained, as a method that allows an increased precision in image guided treatments. This publication is a resume of the GOCO Congress (Montpellier 2017). A part of this congress was about the use of MRI in clinical practice, focused on the oncology field. The role of this tool was described in diagnosis, staging of tumors, evaluation of treatment response and the future use in prognostic and investigation (radiomics).  相似文献   
9.
Modern radiotherapy treatments require frequent imaging for accurate patient positioning relative to the therapeutic radiation beam. Imaging practices in five Finnish radiotherapy clinics were assessed and discussed from the patient dose optimization point of view. The results show that imaging strategies are not jointly established and variations exist. The organ absorbed doses depend on imaging technique and imaging frequency. In particular, organ doses from the cone beam computed tomography can have very large variations (a factor of 10–50 in breast imaging and factor of 5 in prostate imaging). The cumulative imaging organ dose from the treatment can vary by a factor of ten or more for the same treatment, depending on the chosen technique and imaging frequency. Awareness and optimization of the imaging dose in image-guided radiotherapy should be strengthened.  相似文献   
10.
In this contribution we describe the implementation of a novel solution for image guided particle therapy, designed to ensure the maximal accuracy in patient setup. The presented system is installed in the central treatment room at Centro Nazionale di Adroterapia Oncologica (CNAO, Italy), featuring two fixed beam lines (horizontal and vertical) for proton and carbon ion therapy. Treatment geometry verification is based on robotic in-room imaging acquisitions, allowing for 2D/3D registration from double planar kV-images or 3D/3D alignment from cone beam image reconstruction. The calculated six degrees-of-freedom correction vector is transferred to the robotic patient positioning system, thus yielding automated setup error compensation. Sub-millimetre scale residual errors were measured in absolute positioning of rigid phantoms, in agreement with optical- and laser-based assessment. Sub-millimetre and sub-degree positioning accuracy was achieved when simulating setup errors with anthropomorphic head, thorax and pelvis phantoms. The in-house design and development allowed a high level of system customization, capable of replicating the clinical performance of commercially available products, as reported with preliminary clinical results in 10 patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号