首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6750篇
  免费   349篇
  国内免费   77篇
  2023年   59篇
  2022年   68篇
  2021年   86篇
  2020年   106篇
  2019年   167篇
  2018年   183篇
  2017年   123篇
  2016年   124篇
  2015年   153篇
  2014年   359篇
  2013年   448篇
  2012年   243篇
  2011年   354篇
  2010年   276篇
  2009年   399篇
  2008年   364篇
  2007年   386篇
  2006年   306篇
  2005年   357篇
  2004年   248篇
  2003年   247篇
  2002年   219篇
  2001年   119篇
  2000年   113篇
  1999年   113篇
  1998年   116篇
  1997年   86篇
  1996年   77篇
  1995年   102篇
  1994年   89篇
  1993年   76篇
  1992年   86篇
  1991年   55篇
  1990年   51篇
  1989年   49篇
  1988年   50篇
  1987年   45篇
  1986年   28篇
  1985年   53篇
  1984年   111篇
  1983年   78篇
  1982年   60篇
  1981年   65篇
  1980年   67篇
  1979年   62篇
  1978年   34篇
  1977年   29篇
  1976年   26篇
  1975年   19篇
  1974年   20篇
排序方式: 共有7176条查询结果,搜索用时 15 毫秒
1.
m-AMSA, an established inhibitor of eukaryotic type II topoisomerases, exerts its cidal effect by binding to the enzyme–DNA complex thus inhibiting the DNA religation step. The molecule and its analogues have been successfully used as chemotherapeutic agents against different forms of cancer. After virtual screening using a homology model of the Mycobacterium tuberculosis topoisomerase I, we identified m-AMSA as a high scoring hit. We demonstrate that m-AMSA can inhibit the DNA relaxation activity of topoisomerase I from M. tuberculosis and Mycobacterium smegmatis. In a whole cell assay, m-AMSA inhibited the growth of both the mycobacteria.  相似文献   
2.
Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.  相似文献   
3.
Sticholysin I (St I) is a pore-forming toxin (PFT) produced by the Caribbean Sea anemone Stichodactyla helianthus belonging to the actinoporin protein family, a unique class of eukaryotic PFT exclusively found in sea anemones. As for actinoporins, it has been proposed that the presence of sphingomyelin (SM) and the coexistence of lipid phases increase binding to the target membrane. However, little is known about the role of membrane structure and dynamics (phase state, fluidity, presence of lipid domains) on actinoporins' activity or which regions of the membrane are the most favorable platforms for protein insertion. To gain insight into the role of SM on the interaction of St I to lipid membranes we studied their binding to monolayers of phosphatidylcholine (PC) and SM in different proportions. Additionally, the effect of acyl chain length and unsaturation, two features related to membrane fluidity, was evaluated on St I binding to monolayers. This study revealed that St I binds and penetrates preferentially and with a faster kinetic to liquid-expanded films with high lateral mobility and moderately enriched in SM. A high content of SM induces a lower lateral diffusion and/or liquid-condensed phases, which hinder St I binding and penetration to the lipid monolayer. Furthermore, the presence of lipid domain borders does not appear as an important factor for St I binding to the lipid monolayer.  相似文献   
4.
The accessory light-harvesting polypeptides associated with photosystem I (LHCI) in Porphyridium cruentum bind chlorophyll a, zeaxanthin and IDDLE" BORDER="0">-carotene. A cDNA library of P. cruentum was screened with an antiserum specific to the LHCI polypeptides, and an 0.9 kb fragment was identified as coding for an LHCI polypeptide. This cDNA, which we named LhcaR1, has an open reading frame encoding 222 amino acid residues including a putative transit peptide of 28 amino acids. Hydropathy analysis suggests that there are three transmembrane helices in the mature polypeptide. Each of the amino acid residues that bind chlorophyll (six residues) and serve in stabilizing the helices in higher-plant LHCs are conserved in helices 1 and 3 of P. cruentum LhcaR1. The N-terminal flanking regions of these two helices also show high sequence conservation with other LHCs. Helix 2 contains a seventh putative chlorophyll-binding site, but resembles helix 2 of higher-plant LHCs to a lesser degree. A sequence motif of 11 residues found near the N-terminus and in each of the three helices suggests the possibility that the red algal LhcaR1 derives from a gene duplication. Polypeptides of the expected molecular weight in six other red algae (Achrochaetium, Bangia, Callithamnion, Cyanidium, Polysiphonia, Spermothamnion) were recognized by the antiserum to P. cruentum LHCI, indicating a wide distribution of LHCI in rhodophytes.  相似文献   
5.
Riboswitches are RNA molecules that regulate gene expression using conformation change, affected by binding of small molecule ligands. Although a number of ligand‐bound aptamer complex structures have been solved, it is important to know ligand‐free conformations of the aptamers in order to understand the mechanism of specific binding by ligands. In this paper, we use dynamics simulations on a series of models to characterize the ligand‐free and ligand‐bound aptamer domain of the c‐di‐GMP class I (GEMM‐I) riboswitch. The results revealed that the ligand‐free aptamer has a stable state with a folded P2 and P3 helix, an unfolded P1 helix and open binding pocket. The first Mg ions binding to the aptamer is structurally favorable for the successive c‐di‐GMP binding. The P1 helix forms when c‐di‐GMP is successive bound. Three key junctions J1/2, J2/3 and J1/3 in the GEMM‐I riboswitch contributing to the formation of P1 helix have been found. The binding of the c‐di‐GMP ligand to the GEMM‐I riboswitch induces the riboswitch's regulation through the direct allosteric communication network in GEMM‐I riboswitch from the c‐di‐GMP binding sites in the J1/2 and J1/3 junctions to the P1 helix, the indirect ones from those in the J2/3 and P2 communicating to P1 helix via the J1/2 and J1/3 media.  相似文献   
6.
Collagenous and non-collagenous proteins (NCPs) in the extracellular matrix, as well as the coupling mechanisms between osteoclasts and osteoblasts, work together to ensure normal bone metabolism. Each protein plays one or more critical roles in bone metabolism, sometimes even contradictory, thus affecting the final mechanical, physical and chemical properties of bone tissue. Anomalies in the amount and structure of one or more of these proteins can cause abnormalities in bone formation and resorption, which consequently leads to malformations and defects, such as osteoporosis (OP). The connections between key proteins involved in matrix formation and resorption are far from being elucidated. In this review, we resume knowledge on the crosstalk between collagen type I and selected NCPs (Transforming Growth Factor-β, Insulin-like Growth Factor-1, Decorin, Osteonectin, Osteopontin, Bone Sialoprotein and Osteocalcin) of bone matrix, focusing on their possible involvement and role in OP. The different elements of this network can be pharmacologically targeted or used for the design/development of innovative regenerative strategies to modulate a feedback loop in bone remodelling.  相似文献   
7.
8.
9.
Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics.  相似文献   
10.
Summary The effects of 25-fold overproduction ofEscherichia coli signal peptidase I (SPase I) on the processing kinetics of various (hybrid) secretory proteins, comprising fusions between signal sequence functions selected from theBacillus subtilis chromosome and the mature part of TEM-β-lactamase, were studied inE. coli. One precursor (pre[A2d]-β-lactamase) showed an enhanced processing rate, and consequently, a highly improved release of the mature enzyme into the periplasm. A minor fraction of a second hybrid precursor (pre[Al3i]-β-lactamase), which was not processed under standard conditions of SPase I synthesis, was shown to be processed under conditions of SPase I overproduction. However, this did not result in efficient release of the mature β-lactamase into the periplasm. In contrast, the processing rates of wild-type pre-β-lactamase and pre(A2)-β-lactamase, already high under standard conditions, were not detectably altered by SPase I overproduction. These results demonstrate that the availability of SPase I can be a limiting factor in protein export inE. coli, in particular with respect to (hybrid) precursor proteins showing low (SPase I) processing efficiencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号