首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2014年   1篇
  2004年   1篇
  2003年   1篇
  1993年   1篇
  1991年   1篇
  1982年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Most estimates of regional and global soil carbon stocks are based on extrapolations of mean soil C contents for broad categories of soil or vegetation types. Uncertainties exist in both the estimates of mean soil C contents and the area over which each mean should be extrapolated. Geographic information systems now permit spatially referenced estimates of soil C at finer scales of resolution than were previously practical. We compared estimates of total soil C stocks of the state of Maine using three methods: (1) multiplying the area of the state by published means of soil C for temperate forests and for Spodosols; (2) calculating areas of inclusions of soil taxa in the 1:5,000,000 FAO/UNESCO Soils Map of the World and multiplying those areas by selected mean carbon contents; and (3) calculating soil C for each soil series and map unit in the 1:250,000 State Soil Geographic Data Base (STATSGO) and summing these estimates for the entire state. The STATSGO estimate of total soil C was between 23% and 49% higher than the common coarse scale extrapolations, primarily because STATSGO included data on Histosols, which cover less than 5% of the area of the state, but which constitute over one-third of the soil C. Spodosols cover about 65% of the state, but contribute less than 39% of the soil C. Estimates of total soil C in Maine based on the FAO map agreed within 8% of the STATSGO estimate for one possible matching of FAO soil taxa with data on soil C, but another plausible matching overestimated soil C stocks. We also compared estimates from the 1:250,000 STATSGO database and from the 1:20,000 Soil Survey Geographic Data Base (SSURGO) for a 7.5 minute quadrangle within the state. SSURGO indicated 13% less total soil C than did STATSGO, largely because the attribute data on depths of soil horizons in SSURGO are more specific for this locality. Despite localized differences, the STATSGO database offers promise of scaling up county soil survey data to regional scales because it includes attribute data and estimates of areal coverage of C-rich inclusions within map units. The spatially referenced data also permit examination of covariation of soil C stocks with soil properties thought to affect stabilization of soil C. Clay content was a poor predictor of soil C in Maine, but drainage class covaried significantly with soil C across the state.  相似文献   
2.
Soils and aboveground production in five types of upland forest in the Florida Keys were examined. Throughout the habitat gradient represented by these forest types, the soils were predominantly shallow and organic, forming in place directly on the limestone bedrock. However, the well-drained soils in the most productive broadleaved forests were deep enough to qualify as Histosols (Folists). Soils decreased in electrical conductivity and increased in nutrient content with increasing aboveground production. At 3–12 Mg ha–1 yr–1, production was within the range reported for dry tropical forests. Measured rates of decomposition were moderate or fast, and estimates of the organic C turnover of several soils based on their bomb radiocarbon signature were 100 years or less. In the face of these rapid turnover rates, we attribute the development of organic soils to the absence of mineral residues from weathering of the underlying limestone bedrock. Fast turnover of organic matter, and rapid and efficient cycling of nutrients are necessary to sustain the high production rates obtained on these shallow organic soils.  相似文献   
3.
Nitrification in some tropical soils   总被引:19,自引:0,他引:19  
Summary Nitrification of soil N in 8 mineral and 2 histosols having a wide range in pH (3.4 to 8.6), organic C (1.22 to 22.70%) and total N (0.09 to 1.20%) was studied by measuring nitrate fromation under aerobic incubation of the soil samples at 30°C for 4 weeks. The amounts of NO3-N produced in the soils varied from 0 to 123 μg/g of soil. Soil N in the two acid sulfate soils and one other acid soil did not nitrify under conditions that stimulate nitrification. Soils having pH more than 6.0 nitrified at a rapid rate and released NO3-N ranging from 98 to 123 μg/g. The two organic soils differed considerably in their capacity to nitrify though the total amounts of mineral N released were similar in these soils. The amounts of NO3-N formed in the soils was highly positively correlated with the soil pH but was not significantly correlated with the organic C of total N content of the soils. Statistical analysis also showed that nitrate formation was not significantly correlated with soil pH in soils having pH higher than 6.0.  相似文献   
4.
Lignin is an aromatic plant compound that decomposes more slowly than other organic matter compounds; however, it was recently shown that lignin could decompose as fast as litter bulk carbon in minerals soils. In alpine Histosols, where organic matter dynamics is largely unaffected by mineral constituents, lignin may be an important part of soil organic matter (SOM). These soils are expected to experience alterations in temperature and/or physicochemical parameters as a result of global climate change. The effect of these changes on lignin dynamics remains to be examined and the importance of lignin as SOM compound in these soils evaluated. Here, we investigated the decomposition of individual lignin phenols of maize litter incubated for 2 years in‐situ in Histosols on an Alpine elevation gradient (900, 1300, and 1900 m above sea level); to this end, we used the cupric oxide oxidation method and determined the phenols’ 13C signature. Maize lignin decomposed faster than bulk maize carbon in the first year (86 vs. 78% decomposed); however, after the second year, lignin and bulk C decomposition did not differ significantly. Lignin mass loss did not correlate with soil temperature after the first year, and even correlated negatively at the end of the second year. Lignin mass loss also correlated negatively with the remaining maize N at the end of the second year, and we interpreted this result as a possible negative influence of nitrogen on lignin degradation, although other factors (notably the depletion of easily degradable carbon sources) may also have played a role at this stage of decomposition. Microbial community composition did not correlate with lignin mass loss, but it did so with the lignin degradation indicators (Ac/Al)s and S/V after 2 years of decomposition. Progressing substrate decomposition toward the final stages thus appears to be linked with microbial community differentiation.  相似文献   
5.
Spilled crude petroleum from oil wells contains numerous hydrocarbons, some of which are toxic and threaten life. We have studied the mobility and persistence of hydrocarbons in waterlogged soils that contain large proportions of fermented organic matter (Histosols) and large concentrations of dissolved organic carbon (DOC) in the State of Tabasco, Mexico. We sampled soil and phreatic water at sites polluted by oil spills for several decades, as well as at sites that had only recently (few weeks) been polluted, and compared their hydrocarbon contents with those of unaffected sites in the same area. Samples were analyzed for 16 non-alkylated polyaromatic hydrocarbons (PAHs) and n-alkanes from nC9 to nC34. The spilled hydrocarbons had remained predominantly in the organic surface horizons of the soil where spillage occurred; there was little evidence of movement within the soil. The fraction of low molecular weight compounds was larger at sites of recent spills than where spills happened several decades ago. Nevertheless, sites of old spills still contained large concentrations of hydrocarbons, among which those of low molecular weight represented from 30 to 49% of total PAHs and from 50 to 84% of total n-alkanes, indicating that volatilization or microbial degradation is slow in these soils. In the peat horizons the measured organic carbon partition coefficients (K oc ) for the higher molecular weight PAHs were consistently smaller than those estimated by empirical equations by up to two orders of magnitude. The dissolved organic carbon of these peat soils seems to influence this behavior. At sites of old spills, partition coefficients for the PAHs were larger than at sites of recent spills.  相似文献   
6.
A number of nutritional problems have been reported for production of rice (Oryza sativa L.) on organic soils (Histosols). One of these, termed rice-seedling chlorosis, occurs when rice is drill-seeded into certain drained Histosols, and results in chlorotic, weakened seedlings that often die before or during imposition of the permanent flood. The condition can be predicted on the basis of soil testing and can be prevented by applying water-soluble Fe with the seed at planting. Greenhouse and field studies were conducted to determine the degree to which this problem can be corrected by the use of post-emergence foliarly applied Fe when the condition is not attended to at planting. It was determined that foliar application of Fe improved seedling growth, reduced seedling mortality, and increased rice grain production relative to no treatment. Nevertheless, prediction by the use of soil testing and prevention by application of Fe at seeding appears to be a more effective method for correcting seedling chlorosis than post-emergence foliar application of Fe.Florida Agricultural Experiment Station, Journal Series No. R-01230.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号