首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   1篇
  国内免费   3篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   13篇
  2014年   20篇
  2013年   19篇
  2012年   35篇
  2011年   28篇
  2010年   33篇
  2009年   4篇
  2008年   5篇
  2007年   2篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
1.
Replicative polymerase stalling is coordinated with replicative helicase stalling in eukaryotes, but the mechanism underlying this coordination is not known. Cdc45 activates the Mcm2-7 helicase. We report here that Cdc45 from budding yeast binds tightly to long (≥ 40 nucleotides) genomic single-stranded DNA (ssDNA) and that 60mer ssDNA specifically disrupts the interaction between Cdc45 and Mcm2-7. We identified a mutant of Cdc45 that does not bind to ssDNA. When this mutant of cdc45 is expressed in budding yeast cells exposed to hydroxyurea, cell growth is severely inhibited, and excess RPA accumulates at or near an origin. Chromatin immunoprecipitation suggests that helicase movement is uncoupled from polymerase movement for mutant cells exposed to hydroxyurea. These data suggest that Cdc45-ssDNA interaction is important for stalling the helicase during replication stress.  相似文献   
2.
Kinetic analysis of the DNA unwinding and translocation activities of helicases is necessary for characterization of the biochemical mechanism(s) for this class of enzymes. Saccharomyces cerevisiae Pif1 helicase was characterized using presteady state kinetics to determine rates of DNA unwinding, displacement of streptavidin from biotinylated DNA, translocation on single-stranded DNA (ssDNA), and ATP hydrolysis activities. Unwinding of substrates containing varying duplex lengths was fit globally to a model for stepwise unwinding and resulted in an unwinding rate of ∼75 bp/s and a kinetic step size of 1 base pair. Pif1 is capable of displacing streptavidin from biotinylated oligonucleotides with a linear increase in the rates as the length of the oligonucleotides increased. The rate of translocation on ssDNA was determined by measuring dissociation from varying lengths of ssDNA and is essentially the same as the rate of unwinding of dsDNA, making Pif1 an active helicase. The ATPase activity of Pif1 on ssDNA was determined using fluorescently labeled phosphate-binding protein to measure the rate of phosphate release. The quantity of phosphate released corresponds to a chemical efficiency of 0.84 ATP/nucleotides translocated. Hence, when all of the kinetic data are considered, Pif1 appears to move along DNA in single nucleotide or base pair steps, powered by hydrolysis of 1 molecule of ATP.  相似文献   
3.
DNA-protein cross-links (DPCs) are formed when cells are exposed to various DNA-damaging agents. Because DPCs are extremely large, steric hindrance conferred by DPCs is likely to affect many aspects of DNA transactions. In DNA replication, DPCs are first encountered by the replicative helicase that moves at the head of the replisome. However, little is known about how replicative helicases respond to covalently immobilized protein roadblocks. In the present study we elucidated the effect of DPCs on the DNA unwinding reaction of hexameric replicative helicases in vitro using defined DPC substrates. DPCs on the translocating strand but not on the nontranslocating strand impeded the progression of the helicases including the phage T7 gene 4 protein, simian virus 40 large T antigen, Escherichia coli DnaB protein, and human minichromosome maintenance Mcm467 subcomplex. The impediment varied with the size of the cross-linked proteins, with a threshold size for clearance of 5.0–14.1 kDa. These results indicate that the central channel of the dynamically translocating hexameric ring helicases can accommodate only small proteins and that all of the helicases tested use the steric exclusion mechanism to unwind duplex DNA. These results further suggest that DPCs on the translocating and nontranslocating strands constitute helicase and polymerase blocks, respectively. The helicases stalled by DPC had limited stability and dissociated from DNA with a half-life of 15–36 min. The implications of the results are discussed in relation to the distinct stabilities of replisomes that encounter tight but reversible DNA-protein complexes and irreversible DPC roadblocks.  相似文献   
4.
Post-replicational telomere end processing involves both extension by telomerase and resection to produce 3′-GT-overhangs that extend beyond the complementary 5′-CA-rich strand. Resection must be carefully controlled to maintain telomere length. At short de novo telomeres generated artificially by HO endonuclease in the G2 phase, we show that dna2-defective strains are impaired in both telomere elongation and sequential 5′-CA resection. At native telomeres in dna2 mutants, GT-overhangs do clearly elongate during late S phase but are shorter than in wild type, suggesting a role for Dna2 in 5′-CA resection but also indicating significant redundancy with other nucleases. Surprisingly, elimination of Mre11 nuclease or Exo1, which are complementary to Dna2 in resection of internal double strand breaks, does not lead to further shortening of GT-overhangs in dna2 mutants. A second step in end processing involves filling in of the CA-strand to maintain appropriate telomere length. We show that Dna2 is required for normal telomeric CA-strand fill-in. Yeast dna2 mutants, like mutants in DNA ligase 1 (cdc9), accumulate low molecular weight, nascent lagging strand DNA replication intermediates at telomeres. Based on this and other results, we propose that FEN1 is not sufficient and that either Dna2 or Exo1 is required to supplement FEN1 in maturing lagging strands at telomeres. Telomeres may be among the subset of genomic locations where Dna2 helicase/nuclease is essential for the two-nuclease pathway of primer processing on lagging strands.  相似文献   
5.
Ahn B 《Molecules and cells》2000,10(5):592-597
The dual-incision nature of the reaction of UV-irradiated DNA catalyzed by the UvrABC complex potentially leads to excision of a damaged fragment. However, neither fragment release under nondenaturing conditions nor the UvrBC proteins are turned over. The addition of the UvrD protein to the incised DNA-UvrBC complex results in excision of the incised damaged strand and in the turnover of the UvrC protein. In an effort to better understand the involvement of UvrD in the excision step, immunoprecipitation was used to detect interacting proteins with UvrD in the DNA repair. In this communication, it is shown that UvrA and UvrB are precipitated with UvrD in solution but the UvrAB complex is not. In the incision complex, UvrB could be precipitated and the preincubation of UvrD with UvrB revealed an inhibitory effect on the turnover of the incision complex. These data imply that UvrB in the incision complex seems to recruit UvrD to the 3 incised site of the incised strand by protein-protein interaction and to allow initiation of unwinding by UvrD from the resulting nick in a 3 to 5 direction.  相似文献   
6.
目的研究属于蜗牛的壳聚糖水解酶的纯化方法,得到壳聚糖水解酶的纯品,从而为氨基酸序列分析、基因克隆及工业菌制备奠定前期基础。方法建立检测蜗牛壳聚糖水解酶活性的手段并考察影响酶活性的各种因素,比较现有层析方法纯化蜗牛壳聚糖水解酶的实际效果,确定纯化的最佳条件,从而设计出最合理的纯化方案。结果经苯基琼脂糖柱层析,DEAE-Sepharose离子交换层析和Sephacryl S-300凝胶过滤分离,得到高纯高活性蛋白质,在SDS-PAGE上用银染的方法呈单一蛋白质条带,比活性提高33.333倍,纯化倍数为18.272,得率为0.15。结论实验建立了1种从蜗牛中分离高效高纯度壳聚糖水解酶的方法,为壳寡糖的酶解工业生产提供了新思路、新方法。  相似文献   
7.
Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw breakage syndrome characterized by cellular defects in genome maintenance. The DNA triplex helix structures that form by Hoogsteen or reverse Hoogsteen hydrogen bonding are examples of alternate DNA structures that can be a source of genomic instability. In this study, we have examined the ability of human ChlR1 helicase to destabilize DNA triplexes. Biochemical studies demonstrated that ChlR1 efficiently melted both intermolecular and intramolecular DNA triplex substrates in an ATP-dependent manner. Compared with other substrates such as replication fork and G-quadruplex DNA, triplex DNA was a preferred substrate for ChlR1. Also, compared with FANCJ, a helicase of the same family, the triplex resolving activity of ChlR1 is unique. On the other hand, the mutant protein from a Warsaw breakage syndrome patient failed to unwind these triplexes. A previously characterized triplex DNA-specific antibody (Jel 466) bound triplex DNA structures and inhibited ChlR1 unwinding activity. Moreover, cellular assays demonstrated that there were increased triplex DNA content and double-stranded breaks in ChlR1-depleted cells, but not in FANCJ−/− cells, when cells were treated with a triplex stabilizing compound benzoquinoquinoxaline, suggesting that ChlR1 melting of triple-helix structures is distinctive and physiologically important to defend genome integrity. On the basis of our results, we conclude that the abundance of ChlR1 known to exist in vivo is likely to be a strong deterrent to the stability of triplexes that can potentially form in the human genome.  相似文献   
8.
Among the enzymes involved in the life cycle of HCV, the non-structural protein NS3, with its double function of protease and NTPase/helicase, is essential for the virus replication. Exploiting our previous knowledge in the development of nucleotide-mimicking NS3 helicase (NS3h) inhibitors endowed with key structural and electronic features necessary for an optimal ligand-enzyme interaction, we developed the tetrahydroacridinyl derivative 3a as the most potent NS3h competitive inhibitor reported to date (HCV NS3h K(i)=20 nM).  相似文献   
9.
A typical plasmid replicon of Escherichia coli, such as ori γ of R6K, contains tandem iterons (iterated initiator protein binding sites), an AT-rich region that melts upon initiator-iteron interaction, two binding sites for the bacterial initiator protein DnaA, and a binding site for the DNA-bending protein IHF. R6K also contains two structurally atypical origins called α and β that are located on either side of γ and contain a single and a half-iteron, respectively. Individually, these sites do not bind to initiator protein π but access it by DNA looping-mediated interaction with the seven π-bound γ iterons. The π protein exists in 2 interconvertible forms: inert dimers and active monomers. Initiator dimers generally function as negative regulators of replication by promoting iteron pairing (“handcuffing”) between pairs of replicons that turn off both origins. Contrary to this existing paradigm, here we show that both the dimeric and the monomeric π are necessary for ori α-driven plasmid maintenance. Furthermore, efficient looping interaction between α and γ or between 2 γ iterons in vitro also required both forms of π. Why does α-γ iteron pairing promote α activation rather than repression? We show that a weak, transitory α-γ interaction at the iteron pairs was essential for α-driven plasmid maintenance. Swapping the α iteron with one of γ without changing the original sequence context that caused enhanced looping in vitro caused a significant inhibition of α-mediated plasmid maintenance. Therefore, the affinity of α iteron for π-bound γ and not the sequence context determined whether the origin was activated or repressed.  相似文献   
10.
In the present study, the hemoglobin (Hb)-binding activity of Actinobacillus pleuropneumoniae was examined using fluorescein-labeled pig Hb and flow cytometry. Comparison of the Hb-binding activity of A. pleuropneumoniae serotype 1 strain 4074 grown under iron-restricted conditions with cells grown under iron-sufficient conditions indicated that iron-restriction in A. pleuropneumoniae promotes the expression of Hb receptors, and that Hb-binding activity is, at least in part, iron-repressible. Hb-binding activity was also observed in representative strains of A. pleuropneumoniae belonging to serotypes 1 and 2. In addition, A. pleuropneumoniae serotype 1 LPS or capsule isogenic mutants were tested in flow cytometry in order to understand the influence of surface polysaccharides on Hb-binding activity. Experiments with an acapsulated mutant indicated that surface molecules with Hb-binding activity are more exposed at the cell surface in the absence of capsular polysaccharides. However, the Hb-binding activity of LPS mutants analyzed in this study was unchanged compared to the parent strain. The outer membrane proteins profile of A. pleuropneumoniae serotype 1 grown under iron-restricted or iron-sufficient conditions was also evaluated by polyacrylamide gel electrophoresis. Iron-regulated outer membrane proteins were observed under iron-restricted growth conditions which suggests that one or more of these outer membrane proteins may play a role in the Hb-binding activity detected by flow cytometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号