首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   1篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有5条查询结果,搜索用时 8 毫秒
1
1.
2.
Iron-reducing bacteria can transfer electrons to ferric iron oxides which are barely soluble at neutral pH, and electron-shuttling compounds or chelators are discussed to be involved in this process. Experiments using semipermeable membranes for separation of ferric iron-reducing bacteria from ferric iron oxides do not provide conclusive results in this respect. Here, we used ferrihydrite embedded in 1% agar to check for electron-shuttling compounds in pure and in enrichment cultures. Geobacter sulfurreducens reduced spatially distant ferrihydrite only in the presence of anthraquinone-2,6-disulfonate, a small molecule known to shuttle electrons between the bacterial cell and ferrihydrite. However, indications for the production and excretion of electron-shuttling compounds or chelators were found in ferrihydrite-containing agar dilution cultures that were inoculated with ferric iron-reducing enrichment cultures.  相似文献   
3.
淹水时间对水稻土中地杆菌科群落结构及丰度的影响   总被引:2,自引:0,他引:2  
【目的】通过模拟水稻土淹水过程,探讨地杆菌科(Geobacteraceae)群落结构和相对丰度随淹水时间的动态变化特征,揭示其群落结构和相对丰度变化与微生物Fe(Ⅲ)还原的内在联系。【方法】提取水稻土淹水培养1 h、1 d、5 d、10 d、20 d和30 d后的微生物总DNA,构建地杆菌科16S rDNA克隆文库,采用PCR-RFLP方法分析地杆菌科的群落结构和多样性变化特征,通过Real-time PCR技术测定地杆菌科相对丰度的动态变化。采用厌氧泥浆培养方法,测定水稻土中Fe(Ⅱ)产生量变化。【结果】供试水稻土中,微生物Fe(Ⅲ)还原过程在淹水培养初期变化明显,培养20 d后达到稳定期,最大铁还原潜势为10.16 mg/g,最大反应速率为1.064 mg/(g.d),最大反应速率对应的时间为4.84 d。α多样性指数显示,水稻土中地杆菌科的多样性随淹水时间延长呈现波动性变化,淹水5 d和20 d处理出现2个峰值,而淹水10 d和30 d处理的多样性明显减小。β多样性指数表明淹水过程中群落结构存在明显差异。不同淹水时间共产生了10种地杆菌科优势类型,分别属于Clade 1和Clade 2。Real-time PCR结果表明,地杆菌科与总细菌16S rDNA丰度的比值在淹水培养1 d时最小(1.20%),而20 d时达到最大值(4.54%)。【结论】淹水培养的水稻土中,地杆菌科微生物的多样性和相对丰度的动态变化与微生物Fe(Ⅲ)还原过程密切相关。  相似文献   
4.
Microbial community structure was linked to degradation potential in benzene-, toluene- or xylene- (BTX) degrading, iron-reducing enrichments derived from an iron-reducing aquifer polluted with landfill leachate. Enrichments were characterized using 16S rRNA gene-based analysis, targeting of the benzylsuccinate synthase-encoding bssA gene and phospholipid fatty acid (PLFA) profiling in combination with tracking of labelled substrate. 16S rRNA gene analysis indicated the dominance of Geobacteraceae, and one phylotype in particular, in all enrichments inoculated with polluted aquifer material. Upon cultivation, progressively higher degradation rates with a concomitant decrease in species richness occurred in all primary incubations and successive enrichments. Yet, the same Geobacteraceae phylotype remained common and dominant, indicating its involvement in BTX degradation. However, the bssA gene sequences in BTX degrading enrichments differed considerably from those of Geobacter isolates, suggesting that the first steps of toluene, but also benzene and xylene oxidation, are carried out by another member of the enrichments. Therefore, BTX would be synthrophically degraded by a bacterial consortium in which Geobacteraceae utilized intermediate metabolites. PLFA analysis in combination with (13)C-toluene indicated that the enriched Geobacteraceae were assimilating carbon originally present in toluene. Combined with previous studies, this research suggests that Geobacteraceae play a key role in the natural attenuation of each BTX compound in situ.  相似文献   
5.
Using culture-independent 16S rRNA gene-based methods, we previously observed that Geobacteraceae were a major component of the microbial communities in the iron-reducing aquifer polluted by the Banisveld landfill, The Netherlands. However, phylogenetic information does not tell about the functional potential of the detected Geobacteraceae, nor can phylogenetic information easily be used to establish the presence of other iron-reducers. Therefore, we enriched for iron-reducing consortia using a range of culturing media, with various electron donors and acceptors and varying incubation conditions (pH, temperature), and by applying dilution-to-extinction culturing. Enrichments and strains isolated from these enrichments were characterized by 16S rRNA gene-based methods. The number of culturable iron-reducers was less than 110 iron-reducing bacteria per gram of sediment. The Geobacter phylotype that was previously found to constitute a major part of the microbial communities in a part of the aquifer where organic matter was attenuated at a relatively high rate, was not isolated. The isolation of another Geobacter strain and Serratia, Clostridium, Rhodoferax and Desulfitobacteriumstrains suggest the presence of a diverse iron-reducing community. Physiological capabilities of the isolates are described and discussed in relation to the hydrogeochemistry and the high abundance of Geobacteraceae in the aquifer polluted by the Banisveld landfill.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号