首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   0篇
  国内免费   7篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2013年   4篇
  2012年   1篇
  2011年   4篇
  2010年   6篇
  2009年   8篇
  2008年   5篇
  2007年   2篇
  2006年   7篇
  2005年   7篇
  2004年   8篇
  2003年   6篇
  2002年   1篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有78条查询结果,搜索用时 375 毫秒
1.
Assessment of the potential risks posed by chlorinated solvents in groundwater is the key to establish the extent of the contamination and derive achievable remedial targets should remediation deems necessary. This article first presents the application of the American Society for Testing and Materials (ASTM) Risk Based Corrective Actions (RBCA) Guidance to quantitatively evaluate human health and environmental risk for a former chemical works in Shanghai, China. The observed maximum trichloroethylene (TCE) concentration in groundwater at the site reached 1220 mg/l that exceeded its solubility of 1070 mg/l at 10°C (Soil annual average temperature is 10°C in Shanghai). The maximum concentration for cis-1, 2-DCE (DCE) was also found to be elevated at 264 mg/l. A critical exposure pathway was considered to be indoor vapor intrusion of TCE into the buildings with excess lifetime cancer risk for children being 1.7 × 10?3. This cancer risk exceeded regulatory limits of 1 × 10?4 to 1 × 10?6 for The Netherlands, the United Kingdom, and the United States. The calculated groundwater remedial targets for TCE and DCE are 7 mg/l and 904 mg/l, respectively, in order to protect child residents from inhalation of indoor vapors within the close proximity of the source area.  相似文献   
2.
Early embryogenesis has been examined experimentally in several echinoderm and hemichordate classes. Although these studies suggest that the mechanisms which underlie regional specification have been highly conserved within the echinoderm + hemichordate clade, nothing is known about these mechanisms in several other echinoderm classes, including the Ophiuroidea. In this study, early embryogenesis was examined in a very little studied animal, the ophiuroid Ophiopholis aculeata. In O. aculeata, the first two cleavage planes do not coincide with the animal-vegetal axis but rather form approximately 45 degrees off this axis. A fate map of the early embryo was constructed using microinjected lineage tracers. Most significantly, this fate map indicates that there is a major segregation of ectodermal from endomesodermal fates at first cleavage. The distribution of developmental potential in the early embryo was also examined by isolating different regions of the early embryo and following these isolates though larval development. These analyses indicate that endomesodermal developmental potential segregates unequally at first, second, and third cleavage in O. aculeata. These results provide insight into the mechanisms of regional specification in O. aculeata and yield new material for the study of the evolution of echinoderm development.  相似文献   
3.
In the embryonic mouse retina, retinoic acid (RA) is unevenly distributed along the dorsoventral axis: RA-rich zones in dorsal and ventral retina are separated by a horizontal RA-poor stripe that contains the RA-inactivating enzyme CYP26A1. To explore the developmental role of this arrangement, we studied formation of the retina and its projections in Cyp26a1 null-mutant mice. Expression of several dorsoventral markers was not affected, indicating that CYP26A1 is not required for establishing the dorsoventral retina axis. Analysis of the mutation on a RA-reporter mouse background confirmed, as expected, that the RA-poor stripe was missing in the retina and its projections at the time when the optic axons first grow over the diencephalon. A day later, however, a gap appeared both in retina and retinofugal projections. As explanation, we found that CYP26C1, another RA-degrading enzyme, had emerged centrally in a narrower domain within the RA-poor stripe. While RA applications increased retinal Cyp26a1 expression, they slightly reduced Cyp26c1. These observations indicate that the two enzymes function independently. The safeguard of the RA-poor stripe by two distinct enzymes during later development points to a role in maturation of a significant functional feature like an area of higher visual acuity that develops at its location.  相似文献   
4.
5.
In vertebrates, the endoderm is established during gastrulation and gradually becomes regionalized into domains destined for different organs. Here, we present precise fate maps of the gastrulation stage chick endoderm, using a method designed to label cells specifically in the lower layer. We show that the first population of endodermal cells to enter the lower layer contributes only to the midgut and hindgut; the next cells to ingress contribute to the dorsal foregut and followed finally by the presumptive ventral foregut endoderm. Grafting experiments show that some migrating endodermal cells, including the presumptive ventral foregut, ingress from Hensen's node, not directly into the lower layer but rather after migrating some distance within the middle layer. Cell transplantation reveals that cells in the middle layer are already committed to mesoderm or endoderm, whereas cells in the primitive streak are plastic. Based on these results, we present a revised fate map of the locations and movements of prospective definitive endoderm cells during gastrulation.  相似文献   
6.
The upper rhombic lip, a prominent germinal zone of the cerebellum, was recently demonstrated to generate different neuronal cell types over time from spatial subdomains. We have characterized the differentiation of the upper rhombic lip derived granule cell population in stable GFP-transgenic zebrafish in the context of zebrafish cerebellar morphogenesis. Time-lapse analysis followed by individual granule cell tracing demonstrates that the zebrafish upper rhombic lip is spatially patterned along its mediolateral axis producing different granule cell populations simultaneously. Time-lapse recordings of parallel fiber projections and retrograde labeling reveal that spatial patterning within the rhombic lip corresponds to granule cells of two different functional compartments of the mature cerebellum: the eminentia granularis and the corpus cerebelli. These cerebellar compartments in teleosts correspond to the mammalian vestibulocerebellar and non-vestibulocerebellar system serving balance and locomotion control, respectively. Given the high conservation of cerebellar development in vertebrates, spatial partitioning of the mammalian granule cell population and their corresponding earlier-produced deep nuclei by patterning within the rhombic lip may also delineate distinct functional compartments of the cerebellum. Thus, our findings offer an explanation for how specific functional cerebellar circuitries are laid down by spatio-temporal patterning of cerebellar germinal zones during early brain development.  相似文献   
7.
To study the developmental origin of the pancreas we used DiI crystals to mark regions of the early chick endoderm: this allowed correlations to be established between specific endoderm sites and the positions of their descendants. Endodermal precursor cells for the stomach, pancreas and intestine were found to segregate immediately after completion of gastrulation. Transplantation experiments showed that region-specific endodermal fates are determined sequentially in the order stomach, intestine, and then pancreas. Non-pancreatic endoderm transplanted to the stomach region generated ectopic pancreas expressing both insulin and glucagon. These results imply that a pancreas-inducing signal is emitted from somitic mesoderm underlying the pre-pancreatic region, and this extends rostrally beyond the stomach endoderm region at the early somite stage. Transplantation experiments revealed that the endoderm responding to these pancreatic-inducing signals lies within the pre-pancreatic region and extends caudally beyond the region of the intestinal endoderm. The results indicate that pancreatic fate is determined in the area of overlap between these two regions.  相似文献   
8.
A long-standing problem in development is understanding how progenitor cells transiently expressing genes contribute to complex anatomical and functional structures. In the developing nervous system an additional level of complexity arises when considering how cells of distinct lineages relate to newly established neural circuits. To address these problems, we used both cumulative marking with Cre/loxP and Genetic Inducible Fate Mapping (GIFM), which permanently and heritably marks small populations of progenitors and their descendants with fine temporal control using CreER/loxP. A key component used in both approaches is a conditional phenotyping allele that has the potential to be expressed in all cell types, but is quiescent because of a loxP flanked Stop sequence, which precedes a reporter allele. Upon recombination, the resulting phenotyping allele is ‘turned on’ and then constitutively expressed. Thus, the reporter functions as a high fidelity genetic lineage tracer in vivo. Currently there is an array of reporter alleles that can be used in marking strategies, but their recombination efficiency and applicability to a wide array of tissues has not been thoroughly described. To assess the recombination/marking potential of the reporters, we utilized CreERT under the control of a Wnt1 transgene (Wnt1-CreERT) as well as a cumulative, non-inducible En1Cre knock-in line in combination with three different reporters: R26R (LacZ reporter), Z/EG (EGFP reporter), and Tau-Lox-STOP-Lox-mGFP-IRES-NLS-LacZ (membrane-targeted GFP/nuclear LacZ reporter). We marked the Wnt1 lineage using each of the three reporters at embryonic day (E) 8.5 followed by analysis at E10.0, E12.5, and in the adult. We also compared cumulative marking of cells with a history of En1 expression at the same stages. We evaluated the reporters by whole-mount and section analysis and ascertained the strengths and weaknesses of each of the reporters. Comparative analysis with the reporters elucidated complexities of how the Wnt1 and En1 lineages contribute to developing embryos and to axonal projection patterns of neurons derived from these lineages.  相似文献   
9.
Cranial placodes are local thickenings of the vertebrate head ectoderm that contribute to the paired sense organs (olfactory epithelium, lens, inner ear, lateral line), cranial ganglia and the adenohypophysis. Here we use tissue grafting and dye injections to generated fate maps of the dorsal cranial part of the non-neural ectoderm for Xenopus embryos between neural plate and early tailbud stages. We show that all placodes arise from a crescent-shaped area located around the anterior neural plate, the pre-placodal ectoderm. In agreement with proposed roles of Six1 and Pax genes in the specification of a panplacodal primordium and different placodal areas, respectively, we show that Six1 is expressed uniformly throughout most of the pre-placodal ectoderm, while Pax6, Pax3, Pax8 and Pax2 each are confined to specific subregions encompassing the precursors of different subsets of placodes. However, the precursors of the vagal epibranchial and posterior lateral line placodes, which arise from the posteriormost pre-placodal ectoderm, upregulate Six1 and Pax8/Pax2 only at tailbud stages. Whereas our fate map suggests that regions of origin for different placodes overlap extensively with each other and with other ectodermal fates at neural plate stages, analysis of co-labeled placodes reveals that the actual degree of overlap is much smaller. Time lapse imaging of the pre-placodal ectoderm at single cell resolution demonstrates that no directed, large-scale cell rearrangements occur, when the pre-placodal region segregates into distinct placodes at subsequent stages. Our results indicate that individuation of placodes from the pre-placodal ectoderm does not involve large-scale cell sorting in Xenopus.  相似文献   
10.
Podocalyxin (PODXL) is a type I membrane mucoprotein abundantly presented in the epithelial cells (podocytes) of kidney glomeruli where it plays an important role in maintaining the plasma filtration. PODXL is also expressed in other types of cells but its function is ignored. A recombinant soluble fragment of the PODXL ectodomain modifies the signaling of the membrane bound PODXL. Based on this antecedent, we aimed at investigating whether PODXL could be cleaved and released into the extracellular space as a soluble peptide. In this study, we used a fusion protein of human PODXL and green fluorescent protein expressed in CHO cells (CHO-PODXL-GFP) and a human tumor cell (Tera-1) inherently expressing PODXL. PODXL was detected by wide-field microscopy in the Golgi, the plasma membrane and in a vesicular form preferentially located at the leading edges of the cell and also progressing along the filopodium. We detected PODXL in the insoluble and soluble fractions of the extracellular medium of CHO-PODXL-GFP cells. Stimulation of protein kinase C (PKC) by Phorbol-12-myristate-13-acetate (PMA) enhanced the release of PODXL to the extracellular space whereas this effect was prevented either by inhibitors of PKC or specific inhibitors of matrix metalloproteinases. It is concluded that intact PODXL is released to the extracellular space as a cargo of microvesicles and also as a soluble cleaved fragment of ectodomain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号