首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   728篇
  免费   8篇
  国内免费   9篇
  2022年   6篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   7篇
  2017年   5篇
  2016年   4篇
  2015年   9篇
  2014年   15篇
  2013年   19篇
  2012年   13篇
  2011年   25篇
  2010年   23篇
  2009年   47篇
  2008年   41篇
  2007年   55篇
  2006年   37篇
  2005年   22篇
  2004年   36篇
  2003年   31篇
  2002年   21篇
  2001年   13篇
  2000年   20篇
  1999年   18篇
  1998年   18篇
  1997年   12篇
  1996年   14篇
  1995年   14篇
  1994年   12篇
  1993年   6篇
  1992年   14篇
  1991年   12篇
  1990年   10篇
  1989年   19篇
  1988年   12篇
  1987年   7篇
  1986年   13篇
  1985年   12篇
  1984年   24篇
  1983年   7篇
  1982年   7篇
  1981年   14篇
  1980年   12篇
  1979年   16篇
  1978年   3篇
  1977年   6篇
  1976年   2篇
  1975年   2篇
排序方式: 共有745条查询结果,搜索用时 265 毫秒
1.
Summary The trees sampled in this study came from two stands of Norway spruce, Picea abies (L.) Karst., near Stockholm, Sweden, differing in mean age and height. Holes were bored perpendicular to the stem surface, and gas samples were taken from the outer part of the sapwood throughout one growing season. Endogenous levels of molecular oxygen (O2), carbon dioxide (CO2) and ethylene in the outer sapwood were determined by combined gas chromatography — mass spectrometry (GC-MS) and GC. O2 concentrations began to decrease as growth started in spring. The lowest levels (<5%) were recorded around mid-summer. In the younger stand concentrations remained below 5% until September. In October, O2 concentrations in the sapwood were similar to those of air. Concentrations of CO2 were below 1% in spring, but began to rise in May, peaking a month later at approximately 10%. Thereafter a slow decrease occurred until October, by which time levels had returned to those recorded in spring. Ethylene concentrations in the older stand reached 75 ppm early in May, while levels in the younger stand peaked at around 30 ppm later in May. Thereafter ethylene levels in both stands started to decrease down to ppb levels. The correlation between determined gas levels and physiological events associated with the seasonal growth cycle in temperate zones is discussed.  相似文献   
2.
It has been shown that both IAA and ethylene application inhibit flower induction in the short-day plant Pharbitis nil. However application of IAA has elevated ethylene production in this plant, as well. Strong enhancement of ethylene production is also correlated with the night-break effect, which completely inhibits flowering. In order to determine what the role of IAA and ethylene is in the photoperiodic flower induction in Pharbitis nil, we measured changes in their levels during inductive and non-inductive photoperiods, and the effects of ethylene biosynthesis and action inhibitors on inhibition of flowering by IAA. Our results have shown that the inhibitory effect of IAA on Pharbitis nil flowering is not physiological but is connected with its effect on ethylene biosynthesis.  相似文献   
3.
Differential chilling sensitivity in cucumber (Cucumis sativus) seedlings   总被引:3,自引:0,他引:3  
Cucumber ( Cucumis sativus L. cv. Poinsett 76) seeds were chilled at 2.5°C in a study of the chilling sensitivity and recovery of radicle tissue. The effect of chilling on radicle growth and the production of carbon dioxide and ethylene was measured. Chilling sensitivity of radicles increased as they grew from 1 to 7 mm in length. The length, not the age of the radicles, determined the level of chilling sensitivity. Apical tissue was most sensitive to chilling and slowest to recover from chilling, followed by subapical and basal tissue. Our data demonstrate that the chilling sensitivity of young seedling radicles differs along their length and that the rapid chilling-induced inhibition of elongation is probably due to an inability of meristematic cells to remain viable and active when chilled.  相似文献   
4.
The purpose of this work was to investigate the protective effect of five essential oils (EOs); Rosmarinus officinalis, Thymus vulgaris, Origanum compactum Benth., Eucalyptus globulus Labill. and Ocimum basilicum L.; against oxidative stress induced by hydrogen peroxide in Saccharomyces cerevisiae. The chemical composition of the EOs was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). The in vitro antioxidant activity was evaluated and the protective effect of EOs was investigated. Yeast cells were pretreated with different concentrations of EOs (6.25–25 µg/ml) for an hour then incubated with H2O2 (2 mM) for an additional hour. Cell viability, antioxidants (Catalase, Superoxide dismutase and Glutathione reductase) and metabolic (Succinate dehydrogenase) enzymes, as well as the level of lipid peroxidation (LPO) and protein carbonyl content (PCO) were evaluated. The chemical composition of EOs has shown the difference qualitatively and quantitatively. Indeed, O. compactum mainly contained Carvacrol, O. basilicum was mainly composed of Linalool, T. vulgaris was rich in thymol, R. officinalis had high α-Pinene amount and for E. globulus, eucalyptol was the major compound. The EOs of basil, oregano and thyme were found to possess the highest amount of total phenolic compounds. Moreover, they have shown the best protective effect on yeast cells against oxidative stress induced by H2O2. In addition, in a dose dependent manner of EOs in yeast medium, treated cells had lower levels of LPO, lower antioxidant and metabolic enzymes activity than cells exposed to H2O2 only. The cell viability was also improved. It seems that the studied EOs are efficient natural antioxidants, which can be exploited to protect against damages and serious diseases related to oxidative stress.  相似文献   
5.
Incorporation of [3H]galactose and [3H]glucose into the parenchyma, tegument, testis, and muscle of Fasciola hepatica slices was studied by lightand electron-microscope autoradiography. “Accumulation” labeling periods of up to 60 min were used.Both monosaccharides were found to be readily incorporated into glycogen in the parenchymal cells and muscle and [3H]glucose entered the glycogen stores of spermatozoa.No evidence was found for the involvement of any particular cell organelle in glycogenesis, but the demonstration of high synthetic activity in parenchymal evaginations to the base of the surface syncytial tegument supports physiological evidence that glucose enters the fluke mainly across the tegument.Ethylene glycol-dehydrated preparations showed that [3H]galactose was incorporated into glycoprotein by Type I tegumental cells, and perhaps also by sperm morulae. The carbohydrate component seems to be added to the tegumental secretions in the vesicular-lamellar region of the Golgi complex.Following the longest periods of incubation, labeling was observed in the tubules connecting the tegumental cells and syncytium, but not in the surface syncytium itself.  相似文献   
6.
7.
We analyzed auxin-induced and ethylene-enhanced elongation of petiole segments in Ranunculus sceleratus L. The early time course of elongation in petiolar segments was monitored with a computer-based video digitizer system. The application of ethylene-releasing ethrel slightly increased the elongation rate in the absence of IAA. When IAA alone was applied, elongation increased after a latent period of approximately 30 min. Maximal elongation rate was attained immediately after the latent period, and then the stabilized steady rate was recorded. During this phase, addition of ethrel strongly increased the elongation rate after a period of approximately 18 min. Although ethrel could acidify the growth medium, only a small part of the enhanced elongation was due to an acid-growth effect. Most of the growth stimulation was auxin-dependent and must be ascribed to the presence of ethylene. In the presence of ethrel, the log-concentration-response curve of IAA appeared to be shifted to the left. This kinetic analysis indicates an increase, due to ethylene, in the sensitivity of the R. sceleratus petiole to auxin, which results in inducing rapid growth to escape from hypoxia under temporary submergence.  相似文献   
8.
XRN家族是一类5′-3′核酸外切酶家族,主要参与rRNA的成熟加工以及特异mRNA的降解过程,在动物、植物以及微生物的生长发育过程中起着重要的作用.对XRN家族在植物生长发育过程中的功能进行了综述,XRN家族在植物中主要参与rRNA加工过程、miRNA途径、外源mRNA降解过程以及乙烯信号通路.  相似文献   
9.
To establish an economical and environmentally friendly technology for ethylene removal from horticultural facilities and industrial point sources, a bench-scale natural zeolite biofiltration system was developed in this study. The system was evaluated for its performance in removing ethylene from an artificially contaminated air stream and characterized for its bacterial diversity under varied ethylene concentrations, and in different spatial stages of the filter. The biofilter enabled to approximately 100% remove ethylene at loading rates of 0.26-3.76 g m−3 h−1 when operated with inoculum containing enriched ethylene-degrading bacteria. The bacterial diversity and abundance varied with the height of the biofilter. Moreover, the occurrence and predominance of specific bacterial species varied with the concentrations of ethylene introduced into the biofilter, as observed by PCR-DGGE methods. Phylogenetic analysis indicated that the biofilter system supported a diverse community of ethylene-degrading bacteria, with high similarity to species in the classes Betaproteobacteria, Gammaproteobacteria, Bacilli, and Actinobacteria.  相似文献   
10.
Two 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO) genes have been cloned from RNA isolated from leaf tissue of apple (Malus domestica cv. Royal Gala). The genes, designated MD-ACO2 (with an ORF of 990 bp) and MD-ACO3 (966 bp) have been compared with a previously cloned gene of apple, MD-ACO1 (with an ORF of 942 bp). MD-ACO1 and MD-ACO2 share a close nucleotide sequence identity of 93.9% in the ORF but diverge in the 3′ untranslated regions (3′-UTR) (69.5%). In contrast, MD-ACO3 shares a lower sequence identity with both MD-ACO1 (78.5%) and MD-ACO2 (77.8%) in the ORF, and 68.4% (MD-ACO1) and 71% (MD-ACO2) in the 3′-UTR. Southern analysis confirmed that MD-ACO3 is encoded by a distinct gene, but the distinction between MD-ACO1 and MD-ACO2 is not as definitive. Gene expression analysis has shown that MD-ACO1 is restricted to fruit tissues, with optimal expression in ripening fruit, MD-ACO2 expression occurs more predominantly in younger fruit tissue, with some expression in young leaf tissue, while MD-ACO3 is expressed predominantly in young and mature leaf tissue, with less expression in young fruit tissue and least expression in ripening fruit. Protein accumulation studies using western analysis with specific antibodies raised to recombinant MD-ACO1 and MD-ACO3 produced in E. coli confirmed the accumulation of MD-ACO1 in mature fruit, and an absence of accumulation in leaf tissue. In contrast, MD-ACO3 accumulation occurred in younger leaf tissue, and in younger fruit tissue. Further, the expression of MD-ACO3 and accumulation of MD-ACO3 in leaf tissue is linked to fruit longevity. Analysis of the kinetic properties of the three apple ACOs using recombinant enzymes produced in E. coli revealed apparent Michaelis constants (Km) of 89.39 μM (MD-ACO1), 401.03 μM (MD-ACO2) and 244.5 μM (MD-ACO3) for the substrate ACC, catalytic constants (Kcat) of 6.6 × 10−2 (MD-ACO1), 3.44 × 10−2 (Md-ACO2) and 9.14 × 10−2 (MD-ACO3) and Kcat/Km (μM s−1) values of 7.38 × 10−4 μM s−1 (MD-ACO1), 0.86 × 10−4 M s−1 (MD-ACO2) and 3.8 × 10−4 μM s−1 (MD-ACO3). These results show that MD-ACO1, MD-ACO2 and MD-ACO3 are differentially expressed in apple fruit and leaf tissue, an expression pattern that is supported by some variation in kinetic properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号