首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   24篇
  2018年   1篇
  2017年   11篇
  2016年   5篇
  2015年   6篇
  2014年   4篇
  2013年   15篇
  2012年   8篇
  2011年   2篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
Precise migration of neural stem/progenitor cells (NSCs) is crucially important for neurogenesis and repair in the nervous system. However, the detailed mechanisms are not clear. Our previous results showed that NSCs in varying differentiation states possess different migratory ability to vascular endothelial growth factor (VEGF). In this study, we demonstrate the different dynamics of focal adhesions (FAs) and reorganization of F‐actin in NSCs during spreading and migration stimulated by VEGF. We found that the migrating NSCs of 0.5 and 1 day differentiation possess more FAs at leading edge than cells of other states. Moreover, the phosphorylation of focal adhesion kinase (FAK) and paxillin in NSCs correlates closely with their differentiation states. VEGF promotes FA formation with broad lamellipodium generation at the leading edge in chemotaxing cells of 0, 0.5, and 1 day differentiation, but not in cells of 3 days differentiation. Furthermore, cells of 1 day differentiation show a maximal asymmetry of FAs between lamella and cell rear, orchestrating cell polarization and directional migration. Time‐lapse video analysis shows that the disassembly of FAs and the cell tail detachment in NSCs of 1 day differentiation are more rapid, along with the concurrent enlarged size of FAs at the leading edge, leading to the most effective chemotactic response to VEGF. Collectively, these results indicate that the dynamics of FAs and reorganization of F‐actin in NSCs that undergo directional migration correlate closely with their differentiation states, contributing to the different chemotactic responses of these cells to VEGF. J. Cell. Biochem. 114: 1744–1759, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
2.
Parathyroid hormone‐related protein (PTHrP) stimulates osteoblastic function through its N‐ and C‐terminal domains. Since the osteogenic action of the latter domain appears to depend at least in part on its interaction with the vascular endothelial growth factor (VEGF) system, we aimed to explore the putative mechanism underlying this interaction in osteoblasts. Using native conditions for protein extraction and immunoblotting, we found that both PTHrP (107–139) and the shorter PTHrP (107–111) peptide (known as osteostatin), at 100 nM, promoted the appearance of a VEGF receptor (VEGFR) 2 protein band of apparent Mr. wt. 230 kDa, which likely represents its activation by dimer formation, in mouse osteoblastic MC3T3‐E1 cells. Moreover, osteostatin (100 nM) maximally increased VEGFR2 phosphorylation at Tyr‐1059 within 5–10 min in both MC3T3‐E1 and rat osteoblastic osteosarcoma UMR‐106 cells. This phosphorylation elicited by osteostatin appears to be VEGF‐independent, but prevented by the VEGFR2 activation inhibitor SU1498 and also by the Src kinase inhibitors SU6656 and PP1. Furthermore, osteostatin induced phosphorylation of Src, extracellular signal‐regulated kinase (ERK) and Akt with a similar time course to that observed for VEGFR2 activation in these osteoblastic cells. This osteostatin‐dependent induction of ERK and Akt activation was abrogated by SU6656. Up‐regulation of VEGF and osteoprotegerin gene expression as well as the pro‐survival effect induced by osteostatin treatment were all prevented by both SU1498 and SU6656 in these osteoblastic cells. Collectively, these findings demonstrate that the osteostatin domain of C‐terminal PTHrP phosphorylates VEGFR2 through Src activation, which represents a mechanism for modulating osteoblastic function. J. Cell. Biochem. 114: 1404–1413, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
3.
Caveolin‐1 (CAV1) is the principal structural component of caveolae which functions as scaffolding protein for the integration of a variety of signaling pathways. In this study, we investigated the involvement of CAV1 in endothelial cell (EC) functions and show that siRNA‐induced CAV1 silencing in the human EC line EA.hy926 induces distinctive morphological changes, such as a marked increase in cell size and formation of stress fibers. Design‐based stereology was employed in this work to make unbiased quantification of morphometric properties such as volume, length, and surface of CAV1 silenced versus control cells. In addition, we showed that downregulation of CAV1 affects cell cycle progression at G1/S phase transition most likely by perturbation of AKT signaling. With the aim to assess the contribution of CAV1 to typical biological processes of EC, we report here that CAV1 targeting affects cell migration and matrix metalloproteinases (MMPs) activity, and reduces angiogenesis in response to VEGF, in vitro. Taken together our data suggest that the proper expression of CAV1 is important not only for maintaining the appropriate morphology and size of ECs but it might represent a prospective molecular target for studying key biological mechanisms such as senescence and tumorigenesis. J. Cell. Biochem. 114: 1843–1851, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
4.
5.
6.
7.
8.
9.
10.
Endothelial progenitor cells (EPCs) contribute to the tumor vasculature during tumor progression. Decursin isolated from the herb Angelica gigas is known to possess potent anti‐inflammatory activities. Recently, we reported that decursin is a novel candidate for an angiogenesis inhibitor [Jung et al., 2009 ]. In this study, we investigated whether decursin regulates EPC differentiation and function to inhibit tumor vasculogenesis. We isolated AC133+ cells from human cord blood and decursin significantly decreased the number of EPC colony forming units of human cord blood‐derived AC133+ cells that produce functional EPC progenies. Decursin dose‐dependently decreased the cell number of EPC committing cells as demonstrated by EPC expansion studies. Decursin inhibited EPC differentiation from progenitor cells into spindle‐shaped EPC colonies. Additionally, decursin inhibited proliferation and migration of early EPCs isolated from mouse bone marrow. Furthermore, decursin suppressed expression of angiopoietin‐2, angiopoietin receptor Tie‐2, Flk‐1 (vascular endothelial growth factor receptor‐2), and endothelial nitric oxide synthase in mouse BM derived EPCs in a dose‐dependent manner. Decursin suppressed tube formation ability of EPCs in collaboration with HUVEC. Decursin (4 mg/kg) inhibited tumor‐induced mobilization of circulating EPCs (CD34 + /VEGFR‐2+ cells) from bone marrow and early incorporation of Dil‐Ac‐LDL‐labeled or green fluorescent protein (GFP)+ EPCs into neovessels of xenograft Lewis lung carcinoma tumors in wild‐type‐ or bone‐marrow‐transplanted mice. Accordingly, decursin attenuated EPC‐derived endothelial cells in neovessels of Lewis lung carcinoma tumor masses grown in mice. Together, decursin likely affects EPC differentiation and function, thereby inhibiting tumor vasculogenesis in early tumorigenesis. J. Cell. Biochem. 113: 1478–1487, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号