首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   4篇
  国内免费   1篇
  2023年   1篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2014年   8篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
2.
Aberrant DNA methylation is known to occur in cancer, including hematological malignancies such as acute myeloid leukemia (AML). However, less is known about whether specific methylation profiles characterize specific subcategories of AML. We examined this issue by using comprehensive high-throughput array-based relative methylation analysis (CHARM) to compare methylation profiles among patients in different AML cytogenetic risk groups. We found distinct profiles in each group, with the high-risk group showing overall increased methylation compared with low- and mid-risk groups. The differentially methylated regions (DMRs) distinguishing cytogenetic risk groups of AML were enriched in the CpG island shores. Specific risk-group associated DMRs were located near genes previously known to play a role in AML or other malignancies, such as MN1, UHRF1, HOXB3, and HOXB4, as well as TRIM71, the function of which in cancer is not well characterized. These findings were verified by quantitative bisulfite pyrosequencing and by comparison with results available at the TCGA cancer genome browser. To explore the potential biological significance of the observed methylation changes, we correlated our findings with gene expression data available through the TCGA database. The results showed that decreased methylation at HOXB3 and HOXB4 was associated with increased gene expression of both HOXB genes specific to the mid-risk AML, while increased DNA methylation at DCC distinctive to the high-risk AML was associated with increased gene expression. Our results suggest that the differential impact of cytogenetic changes on AML prognosis may, in part, be mediated by changes in methylation.  相似文献   
3.
Current protocols for DNA methylation analysis are either labor intensive or limited to the measurement of only one or two CpG positions. Pyrosequencing is a real-time sequencing technology that can overcome these limitations and be used as an epigenotype-mapping tool. Initial experiments demonstrated reliable quantification of the degree of DNA methylation when 2-6 CpGs were analyzed. We sought to improve the sequencing protocol so as to analyze as many CpGs as possible in a single sequencing run. By using an improved enzyme mix and adding single-stranded DNA-binding protein to the reaction, we obtained reproducible results for as many as 10 successive CpGs in a single sequencing reaction spanning up to 75 nucleotides. A minimum amount of 10 ng of bisulfite-treated DNA is necessary to obtain good reproducibility and avoid preferential amplification. We applied the assay to the analysis of DNA methylation patterns in four CpG islands in the vicinity of IGF2 and H19 genes. This allowed accurate and quantitative de novo sequencing of the methylation state of each CpG, showing reproducible variations of methylation state in contiguous CpGs, and proved to be a useful adjunct to current technologies.  相似文献   
4.
Prenatal diagnosis (PD) is available for pregnancies at risk of monogenic disorders. However, PD requires the use of invasive obstetric techniques for fetal-sample collection and therefore, involves a risk of fetal loss. Circulating fetal DNA in the maternal bloodstream is being used to perform non-invasive prenatal diagnosis (NIPD). NIPD is a challenging discipline because of the biological features of the maternal blood sample. Maternal blood is an unequal mixture of small (and fragmented) amounts of fetal DNA within a wide background of maternal DNA. For this reason, initial NIPD studies have been based on the analysis of specific paternally inherited fetal tracts not present in the maternal genome so as to ensure their fetal origin. Following this strategy, different NIPD studies have been carried out, such as fetal-sex assessment for pregnancies at risk of X-linked disorders, RhD determination, and analysis of single-gene disorders with a paternal origin. The study of the paternal mutation can be used for fetal diagnosis of dominant disorders or to more accurately assess the risk of an affected child in case of recessive diseases. Huntington's disease, cystic fibrosis, or achondroplasia are some examples of diseases studied using NIPD. New technologies are opening NIPD to the analysis of maternally inherited fetal tracts. NIPD of trisomy 21 is the latest study derived from the use of next-generation sequencing (NGS).  相似文献   
5.
6.
《Developmental cell》2021,56(20):2826-2840.e7
  1. Download : Download high-res image (152KB)
  2. Download : Download full-size image
  相似文献   
7.
Early experiences can have enduring impacts on brain and behavior, but the strength of these effects can be influenced by genetic variation. In principle, polymorphic CpGs (polyCpGs) may contribute to gene‐by‐environment interactions (G × E) by altering DNA methylation. In this study, we investigate the influence of polyCpGs on the development of vasopressin receptor 1a abundance in the retrosplenial cortex (RSC‐V1aR) of prairie voles (Microtus ochrogaster). Two alternative alleles (‘HI’/‘LO’) predict RSC avpr1a expression, V1aR abundance and sexual fidelity in adulthood; these alleles differ in the frequency of CpG sites and in methylation at a putative intron enhancer. We hypothesized that the elevated CpG abundance in the LO allele would make homozygous LO/LO voles more sensitive to developmental perturbations. We found that genotype differences in RSC‐V1aR abundance emerged early in ontogeny and were accompanied by differences in methylation of the putative enhancer. As predicted, postnatal treatment with an oxytocin receptor antagonist (OTA) reduced RSC‐V1aR abundance in LO/LO adults but not their HI/HI siblings. Similarly, methylation inhibition by zebularine increased RSC‐V1aR in LO/LO adults, but not in HI/HI siblings. These data show a gene‐by‐environment interaction in RSC‐V1aR. Surprisingly, however, neither OTA nor zebularine altered adult methylation of the intronic enhancer, suggesting that differences in sensitivity could not be explained by CpG density at the enhancer alone. Methylated DNA immunoprecipiation‐sequencing showed additional differentially methylated regions between HI/HI and LO/LO voles. Future research should examine the role of these regions and other regulatory elements in the ontogeny of RSC‐V1aR and its developmentally induced changes.  相似文献   
8.
Arabidopsis downy mildew resistant 6 (dmr6) mutants have lost their susceptibility to the downy mildew Hyaloperonospora arabidopsidis. Here we show that dmr6 is also resistant to the bacterium Pseudomonas syringae and the oomycete Phytophthora capsici. Resistance is accompanied by enhanced defense gene expression and elevated salicylic acid levels. The suppressive effect of the DMR6 oxygenase was confirmed in transgenic Arabidopsis lines overexpressing DMR6 that show enhanced susceptibility to Harabidopsidis, Pcapsici, and Psyringae. Phylogenetic analysis of the superfamily of 2‐oxoglutarate Fe(II)‐dependent oxygenases revealed a subgroup of DMR6‐LIKE OXYGENASEs (DLOs). Within Arabidopsis, DMR6 is most closely related to DLO1 and DLO2. Overexpression of DLO1 and DLO2 in the dmr6 mutant restored the susceptibility to downy mildew indicating that DLOs negatively affect defense, similar to DMR6. DLO1, but not DLO2, is co‐expressed with DMR6, showing strong activation during pathogen attack and following salicylic acid treatment. DMR6 and DLO1 differ in their spatial expression pattern in downy mildew‐infected Arabidopsis leaves; DMR6 is mostly expressed in cells that are in contact with hyphae and haustoria of Harabidopsidis, while DLO1 is expressed mainly in the vascular tissues near infection sites. Strikingly, the dmr6‐3_dlo1 double mutant, that is completely resistant to Harabidopsidis, showed a strong growth reduction that was associated with high levels of salicylic acid. We conclude that DMR6 and DLO1 redundantly suppress plant immunity, but also have distinct activities based on their differential localization of expression.  相似文献   
9.
Pelizzola M  Ecker JR 《FEBS letters》2011,585(13):235-2000
  相似文献   
10.
Parthenogenetically activated oocytes cannot develop to term in mammals due to the lack of paternal gene expression and failed X chromosome inactivation (XCI). To further characterize porcine parthenogenesis, the expression of 18 imprinted genes was compared between parthenogenetic (PA) and normally fertilized embryos (Con) using quantitative real-time PCR (qRT-PCR). The results revealed that maternally expressed genes were over-expressed, whereas paternally expressed genes were significantly reduced in PA fetuses and placentas. The results of bisulfite sequencing PCR (BSP) demonstrated that PRE-1 and Satellite were hypermethylated in both Con and PA fetuses and placentas, while XIST DMRs were hypomethylated only in PA samples. Taken together, these results suggest that the aberrant methylation profile of XIST DMRs and abnormal imprinted gene expression may be responsible for developmental failure and impaired growth in porcine parthenogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号