首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   0篇
  2022年   1篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2016年   1篇
  2014年   8篇
  2013年   13篇
  2012年   9篇
  2011年   9篇
  2010年   2篇
  2009年   7篇
  2008年   9篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1986年   2篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有91条查询结果,搜索用时 562 毫秒
1.
R A Johnson 《FEBS letters》1982,140(1):80-84
The separate and combined effects of molybdate and dithiothreitol on the stability of human uterine 9 S estrogen receptor were studied. Maximal, short-term, protection of the 9 S estrogen receptor was achieved by the joint inclusion of both stabilizing agents in cytosol buffers. This molybdate—dithiothreitol-mediated stability was dependent on reducing agent concentration inferring sulphydryl involvement in 9 S receptor protection by molybdate. The study also showed that molybdate—dithiothreitol could not prevent the gradual decay of the 9 S estrogen receptor to the 4 S form in cytosols stored at 4°C over prolonged periods.  相似文献   
2.
Kinetic studies on cis-[Pt(NH3)2(OH2)2]2+ and various nucleobases show that this ion reacts more quickly with guanosine than with adenosine, cytidine, and thymidine, and that a monophosphoric acid unit considerably enhances the rate of reaction of guanosine; the kinetic preference of 5'-GMP over 5'-AMP may point to a greater thermodynamic selectivity.  相似文献   
3.
Over the past two decades, hydrogen exchange mass spectrometry (HXMS) has achieved the status of a widespread and routine approach in the structural biology toolbox. The ability of hydrogen exchange to detect a range of protein dynamics coupled with the accessibility of mass spectrometry to mixtures and large complexes at low concentrations result in an unmatched tool for investigating proteins challenging to many other structural techniques. Recent advances in methodology and data analysis are helping HXMS deliver on its potential to uncover the connection between conformation, dynamics and the biological function of proteins and complexes. This review provides a brief overview of the HXMS method and focuses on four recent reports to highlight applications that monitor structure and dynamics of proteins and complexes, track protein folding, and map the thermodynamics and kinetics of protein unfolding at equilibrium. These case studies illustrate typical data, analysis and results for each application and demonstrate a range of biological systems for which the interpretation of HXMS in terms of structure and conformational parameters provides unique insights into function. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.  相似文献   
4.
MyD88 is a cytoplasmic adaptor protein that is critical for Toll-like receptor (TLR) signaling. The subcellular localization of MyD88 is characterized as large condensed forms in the cytoplasm. The mechanism and significance of this localization with respect to the signaling function, however, are currently unknown. Here, we demonstrate that MyD88 localization depends on the entire non-TIR region and that the correct cellular targeting of MyD88 is indispensable for its signaling function. The Toll-interleukin I receptor-resistance (TIR) domain does not determine the subcellular localization, but it mediates interaction with specific TLRs. These findings reveal distinct roles for the TIR and non-TIR regions in the subcellular localization and signaling properties of MyD88.  相似文献   
5.
Cells from metazoan organisms are eliminated in a variety of physiological and pathophysiological processes by apoptosis. In this report, we describe the cloning and characterization of molecules from the marine sponges Geodia cydonium and Suberites domuncula, whose domains show a high similarity to those that are found in molecules of the vertebrate Bcl-2 superfamily and of the death receptors. The Bcl-2 proteins contain up to four Bcl-2 homology regions (BH). Two Bcl-2-related molecules have been identified from sponges that are provided with two of those regions, BH1 and BH2, and are termed Bcl-2 homology proteins (BHP). The G. cydonium molecule, BHP1_GC, has a putative size of 28,164, while the related sequence from S. domuncula, BHP1_SD, has a M r of 24,187. Phylogenetic analyses of the entire two sponge BHPs revealed a high similarity to members of the mammalian Bcl-2 superfamilies and to the Caenorhabditis elegans Ced-9. When the two domains, BH1 and BH2, are analyzed separately, again the highest similarity was found to the members of the Bcl-2 superfamily, but a clearly lower relationship to the C. elegans BH1 and BH2 domains in Ced-9. In unrooted phylogenetic trees the sponge BH1 and BH2 are grouped among the mammalian sequences and are only distantly related to the C. elegans BH domains. The analysis of the gene structure of the G. cydonium BHP showed that the single intron present is located within the BH2 domain at the same position as in C. elegans and rat Bcl-xL. In addition, a sponge molecule comprising two death domains has been characterized from G. cydonium. The two death domains of the potential proapoptotic molecule GC_DD2, M r 24,970, share a high similarity with the Fas-FADD/MORT1 domains. A death domain-containing molecule has not been identified in the C. elegans genome. The phylogenetic analysis revealed that the sponge domain originated from an ankyrin building block from which the mammalian Fas-FADD/MORT1 evolved. It is suggested that the apoptotic pathways that involve members of the Bcl-2 superfamily and of the death receptors are already present in the lowest metazoan phylum, the Porifera. Received: 27 July 1999 / Accepted: 28 December 1999  相似文献   
6.
Death receptor 6 (DR6) is a member of the death domain-containing receptors that belong to the TNFR superfamily. To date, the ligand for DR6 is still not clearly defined. Here, we developed a functional agonist monoclonal antibody (DQM3) against DR6, which bound to the first cysteine-rich domain. Importantly, DR6 signaling could be clearly activated by DQM3, which was dependent on its intracellular death domain. In addition, we demonstrated that the association between DR6 and TRADD was enhanced upon DQM3 stimulation and TRADD was involved in DR6-induced signaling activation. Taken together, our findings provide new insight into a novel mechanism by which DR6 induces downstream signaling in response to an agonist antibody.  相似文献   
7.
Most eukaryotic proteins consist of multiple domains created through gene fusions or internal duplications. The most frequent change of a domain architecture (DA) is insertion or deletion of a domain at the N or C terminus. Still, the mechanisms underlying the evolution of multidomain proteins are not very well studied.Here, we have studied the evolution of multidomain architectures (MDA), guided by evolutionary information in the form of a phylogenetic tree. Our results show that Pfam domain families and MDAs have been created with comparable rates (0.1-1 per million years (My)). The major changes in DA evolution have occurred in the process of multicellularization and within the metazoan lineage. In contrast, creation of domains seems to have been frequent already in the early evolution. Furthermore, most of the architectures have been created from older domains or architectures, whereas novel domains are mainly found in single-domain proteins. However, a particular group of exon-bordering domains may have contributed to the rapid evolution of novel multidomain proteins in metazoan organisms. Finally, MDAs have evolved predominantly through insertions of domains, whereas domain deletions are less common.In conclusion, the rate of creation of multidomain proteins has accelerated in the metazoan lineage, which may partly be explained by the frequent insertion of exon-bordering domains into new architectures. However, our results indicate that other factors have contributed as well.  相似文献   
8.
9.
The nitric oxide (NO) system is involved in the regulation of the cardiovascular system in controlling central and peripheral vascular tone and cardiac functions. It was the aim of this study to investigate in wild-type C57BL/6 and endothelial nitric oxide synthase (eNOS) knock-out mice (eNOS-/-) the contribution of NO on the circadian rhythms in heart rate (HR), motility (motor activity [MA]), and body temperature (BT) under various environmental conditions. Experiments were performed in 12:12 h of a light:dark cycle (LD), under free-run in total darkness (DD), and after a phase delay shift of the LD cycle by -6 h (i.e., under simulation of a westward time zone transition). All parameters were monitored by radiotelemetry in freely moving mice. In LD, no significant differences in the rhythms of HR and MA were observed between the two strains of mice. BT, however, was significantly lower during the light phase in eNOS-/- mice, resulting in a significantly greater amplitude. The period of the free-running rhythm in DD was slightly shorter for all variables, though not significant. In general, rhythmicity was greater in eNOS-/- than in C57 mice both in LD and DD. After a delay shift of the LD cycle, HR and BT were resynchronized to the new LD schedule within 5-6 days, and resynchronization of MA occurred within 2-3 days. The results in telemetrically instrumented mice show that complete knock-out of the endothelial NO system—though expressed in the suprachiasmatic nuclei and in peripheral tissues—did not affect the circadian organization of heart rate and motility. The circadian regulation of the body temperature was slightly affected in eNOS-/- mice.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号