首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   5篇
  国内免费   1篇
  2023年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1997年   1篇
  1996年   2篇
  1992年   1篇
  1989年   1篇
  1981年   1篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
We develop a method to predict and validate gene models using PacBio single-molecule, real-time (SMRT) cDNA reads. Ninety-eight percent of full-insert SMRT reads span complete open reading frames. Gene model validation using SMRT reads is developed as automated process. Optimized training and prediction settings and mRNA-seq noise reduction of assisting Illumina reads results in increased gene prediction sensitivity and precision. Additionally, we present an improved gene set for sugar beet (Beta vulgaris) and the first genome-wide gene set for spinach (Spinacia oleracea). The workflow and guidelines are a valuable resource to obtain comprehensive gene sets for newly sequenced genomes of non-model eukaryotes.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0729-7) contains supplementary material, which is available to authorized users.  相似文献   
2.
The flora of New Caledonia encompasses more than 3000 plant species and an endemism of almost 80%. New Caledonia is even considered as one of the 34 ‘hot spots’ for biodiversity. Considering the current global loss of biodiversity and the fact that several drugs and pesticides become obsolete, there is an urgent need to increase sampling and research on new natural products. In this context, here, we reviewed the chemical knowledge available on New Caledonian native flora from economical perspectives. We expect that a better knowledge of the economic potential of plant chemistry will encourage the plantation of native plants for the development of a sustainable economy which will participate in the conservation of biodiversity. This review is divided into three parts, and the third part which is presented here summarizes the scientific literature related to the chemistry of endemic santalales, caryophyllales, and asterids. We show that the high rate of endemism is correlated with the originality of phytochemicals encountered in New Caledonian plants. A total of 176 original natural compounds have been identified from these plants, whereas many species have not been investigated so far. We also discuss the economic potential of plants and molecules with consideration of their medicinal and industrial perspectives. This review finally highlights several groups, such as Sapotaceae, that are unexplored in New Caledonia despite the high chemical interest in them. These plants are considered to have priority in future chemical investigations.  相似文献   
3.
A survey of 112 species of the Caryophyllales showed the presence of flavonols in all eleven families and of C-glycosylflavonoids in nine families, being absent from the Aizoaceae and Cactaceae. 18% of the species contained both classes of compound. C-glycosylflavonoids are reported for the first time in the Amaranthaceae, Basellaceae, Didieraceae, Nyctaginaceae, Phytolaccaceae, Portulacaceae and Molluginaceae. The Caryophyllaceae contained prodominantly C-glycosylflavonoids, suggesting they are the most advanced family in the order.  相似文献   
4.
The systematics and phylogeny of the genus Arenaria and allied genera are unresolved. The use of morphological data has resulted in contradictory taxonomic concepts in the past due to their homoplastic nature. We present a phylogenetic analysis based on internal transcribed spacer (ITS) and rps16 sequence data of 140 (132 taxa) and 131 (120 taxa) accessions, respectively. Maximum parsimony and Bayesian analyses of each marker produced nearly congruent trees. Monophyly of Arenaria s.s. and Eremogone is confirmed here. Our results corroborate earlier results indicating that Arenaria subgenus Odontostemma is monophyletic, but outside the core group of Arenaria. Arenaria subgenus Solitaria is sister to Odontostemma and also not closely related to the latter; both of these subgenera are excluded from Arenaria and treated as distinct genera. The molecular data indicate that the ‘Arenaria s.s. clade’ consists of a few well‐supported subgroups and that the current subgeneric classification of the genus does not reflect evolutionary history. Arenaria subgenus Leiosperma is clearly monophyletic, but we reduce it to sectional level. Our molecular data show that the monotypic Arenaria subgenera Porphyrantha and Arenariastrum are nested in A. subgenus Arenaria, whereas subgenus Eremogoneastrum is included in Eremogone. None of the species‐rich sections in subgenus Arenaria is monophyletic. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 648–669.  相似文献   
5.
Alternanthera (Amaranthaceae) is a diverse genus (80–200 species) largely restricted to the American Tropics. With Pedersenia and Tidestromia, it makes up the ‘Alternantheroid clade’ in Gomphrenoideae. Parsimony and Bayesian analyses of nucleotide sequences of nuclear (ITS) and plastid (rpl16, trnL‐F) and morphological characters identify that the capitate stigma of Alternanthera is a synapomorpy within the Alternantheroids. Within Alternanthera, two major clades were resolved, both of which were marked by otherwise homoplasious characters of the gynoecium: Clade A [99% jackknife (JK); 1.0 posterior probability (PP)] with nine species and Clade B (60% JK; 0.98 PP) with 22 species. Four subclades (B1–B4), strongly supported statistically, were identified in Clade B. Previous subgeneric classifications of Alternanthera appear artificial in light of our new molecular phylogenetic analyses. Most major lineages are congruently resolved by nuclear and plastid data but some incongruence between the nrITS and plastid phylogenetic trees suggests hybridization may have played a role in the rampant speciation in Alternanthera. Whereas C4 photosynthesis appears to have evolved in a single clade, the position of A. littoralis var. maritima (C3) in this clade may be explained by hybrid speciation rather than a reversal from C4 to C3. All C3–C4 intermediates belong to a different clade that also contains C3 species, but species limits, including the widely studied A. tenella, are unclear. The clade including A. tenella and A. halimifolia contains most of the species endemic to the Galápagos whereas A. nesiotes, also endemic to the islands, is nested among widespread American taxa. This suggests that the Galápagos radiation of Alternanthera may have arisen from at least two independent colonization events followed by a subsequent radiation in the former lineage. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169 , 493–517.  相似文献   
6.
7.
8.
Abstract We assess the phylogenetic information in trnK intron at the ordinal level using the Caryophyllales and compare it with that derived from matK. The trnK gene is split into two exons by an intron that includes the matK gene. The plastid trnK is a tRNA gene encoding Lysine(UUU), whereas the matK gene is a putative group II intron maturase. The two regions are usually coamplified, and trnK intron is partially sequenced but its sequences are often excluded from phylogenetic reconstruction at deep historic levels. This study shows that the two regions are comparable in proportion of variable sites, possess a comparable pattern of substitution rates per site, and display similar phylogenetic informativeness profiles and per‐site informativeness. Phylogenetic analyses show strong congruence between phylogenetic trees based on matK and trnK intron partitioned datasets from 45 genera representing 30 of the 34 recognized Caryophyllales families. The trnK intron alone provides a relatively well‐resolved topology for the order. Combining the trnK intron with matK sequence data resulted in six most parsimonious trees, differing only in the placement of Claytonia (Portulacaceae) within the noncore group. A well‐supported major basal split in the order into core and noncore Caryophyllales with Rhabdodendraceae, Simmondsiaceae, and Asteropeiaceae as sister to remaining core lineages is evident in partitioned and combined analyses. The placement of these three families has been disputable, impacting the overall backbone topology of the Caryophyllales. This study demonstrates the cost effectiveness of using the trnK intron along with matK (both substitutions and insertions/deletions) at deeper phylogenetic level.  相似文献   
9.
苋科(Amaranthaceae sensu lato)是石竹目(Caryophyllales)第二大科, 目前被普遍接受的苋科为其广义概念, 含狭义苋科(Amaranthaceae sensu stricto)和藜科(Chenopodiaceae)。然而到目前为止, 藜科是否应作为独立的科还存在争议。此外, 广义苋科内部各亚科之间的系统关系也尚未厘清。对广义苋科所有13个亚科代表类群进行取样(共59种), 基于8个叶绿体序列片段重建其系统发育关系, 并结合分子钟估算, 对该科及其主要分支的起源与分化时间进行推测。结果表明, 广义苋科与狭义苋科都是很好的单系, 但藜科并非单系, 因此不支持藜科在科级水平的地位, 支持广义苋科的观点。除了多节草亚科(Polycnemoideae)之外, 其它亚科的系统位置均得到很好的分辨。分子钟估算结果表明, 广义苋科于白垩纪晚期约69.9 Ma分化出该科的2个主要分支, 且该科在白垩纪-古近纪边界附近时期(约66.0 Ma)可能发生过快速辐射分化事件。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号