首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   2篇
  国内免费   2篇
  2023年   2篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   7篇
  2014年   13篇
  2013年   19篇
  2012年   15篇
  2011年   16篇
  2010年   14篇
  2009年   6篇
  2008年   5篇
  2007年   10篇
  2006年   12篇
  2005年   9篇
  2004年   13篇
  2003年   10篇
  2002年   14篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1995年   2篇
  1994年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
排序方式: 共有214条查询结果,搜索用时 15 毫秒
1.
The activities of mitochondrial type A and B monoamine oxidase were determined in the liver of rats fed a diet containing 2-acetylaminofluorene (AAF). Three days after the initiation of AAF-feeding, there was a significant decrease of type B monoamine oxidase activity without affect on type A enzyme. The decreased activity of type B monoamine oxidase, which reached a minimum after three weeks, was sustained for as long as AAF-feeding was continued. Sex-related difference in response to AAF was seen in the rat with respect to the onset and the intensity of the decreased type B monoamine oxidase activity, male rats being more sensitive to the carcinogen than female rats. In contrast to the in vivo effect, AAF showed a potent inhibitory effect on type A monoamine oxidase, rather than on type B enzyme, when added in vitro. The pI50 values were estimated to be 7.5 against type A monoamine oxidase and 4.1 against type B enzyme, respectively. The in vitro inhibition of both types of monoamine oxidase by AAF was competitive. The Ki values for AAF were calculated to be 9.51 · 10?9 M for type A monoamine oxidase and 1.30 · 10?5 M for type B enzyme, respectively. In accordance with the potent inhibitory effect of AAF on type A monoamine oxidase in vitro, a single administration of the carcinogen, at a dose of 50 mg/kg, resulted in a marked and temporal decrease of the enzyme activity in the mitochondria of male rat liver. Recovery of the decreased type B monoamine oxidase activity was slow, and the enzyme activity did not return to control levels, even if rats were fed the basal diet for 2 or 4 weeks after the cessation of AAF-feeding.  相似文献   
2.
Patients with idiopathic pulmonary fibrosis (IPF) have a high risk of developing lung cancer compared with the general population. The morbidity of lung cancer in IPF patient ranges from 3% to 22%, and in some cases exceeds 50%, and these patients have a reduced survival time. However, the mechanisms through which IPF increases the morbidity and mortality in lung cancer remain unclear.By carefully analyzing the pathological features of these two diseases, we uncovered that, first, similar to IPF, lung carcinomas are more frequently found in the peripheral area of the lungs and, second, lung cancers tend to develop from the honeycomb areas in IPF. In accordance with the above pathological features, due to the spatial location, the peripheral areas of the lung experience a high stretch force because the average distance between adjacent alveolar cells in this area tends to be larger than that at the central lung when inflated; furthermore, the honeycomb areas, comprised of condensed fibrous tissue, are characterized by increased stiffness. Both of these pathological features of lung cancer and IPF are coincidentally related to abnormal mechanical forces (stretch and tissue stiffness). Therefore, we believe that the aberrant mechanical forces that are generated in the lung with IPF may contribute to the onset and progression of lung cancer.In this review, we discuss the possible effects of mechanical forces that are generated in IPF on the initiation and progression of lung cancer from the perspective of the hallmarks of cancer, including proliferation, metastasis, angiogenesis, cancer stem cells, immunology, epigenetics, and metabolism, so as to advance our understanding of the pathogenesis of IPF-related lung cancer and to harness these concepts for lung cancer mechanotherapies.  相似文献   
3.
Nrf2 (NF-E2-related factor 2) is a master regulator of cellular responses against environmental stresses. Nrf2 induces the expression of detoxification and antioxidant enzymes, and Keap1 (Kelch-like ECH-associated protein 1), an adaptor subunit of Cullin 3-based E3 ubiquitin ligase, regulates Nrf2 activity. Keap1 also acts as a sensor for oxidative and electrophilic stresses. Keap1 retains multiple sensor cysteine residues that detect various stress stimuli. Increasing attention has been paid to the roles that Nrf2 plays in the protection of our bodies against drug toxicity and stress-induced diseases. On the other hand, Nrf2 is found to promote both oncogenesis and cancer cell resistance against chemotherapeutic drugs. Thus, although Nrf2 acts to protect our body from deleterious stresses, cancer cells hijack the Nrf2 activity to support their malignant growth. Nrf2 has emerged as a new therapeutic target, and both inducers and inhibitors of Nrf2 are awaited. Studies challenging the molecular basis of the Keap1–Nrf2 system functions are now critically important to improve translational studies of the system. Indeed, recent studies identified cross talk between Nrf2 and other signaling pathways, which provides new insights into the mechanisms by which the Keap1–Nrf2 system serves as a potent regulator of our health and disease.  相似文献   
4.
Interactions between the physiologically essential metals calcium, magnesium, and zinc and the carcinogenic metals nickel and cadmium were investigated to help elucidate the mechanisms of action of the carcinogenic metals. Bioassay studies revealed several significant findings, including: (1) the ability of magnesium and calcium to inhibit nickel-induced elevation of pulmonary adenoma incidence in strain A mice; (2) the ability of magnesium, but not of calcium, to prevent cadmium-induced subcutaneous sarcoma formation; and (3) the ability of magnesium, but not of calcium, to inhibit nickel-induced muscle tumor formation. Biochemical studies indicated a direct relationship between the antitumorigenic potential of magnesium and the capacity of this metal to: (1) inhibit nickel and cadmium uptake by the target tissues in vivo; (2) inhibit nickel-induced disturbances in DNA synthesis in vivo; (3) inhibit nuclear and cytosolic uptake of nickel by the target tissue cells in vivo; and (4) inhibit nickel and cadmium binding to DNA in vitro. Calcium, which in most cases did not prevent carcinogenesis, had no consistent influence on the uptake of carcinogenic metals or their biochemical effects in the target tissues. Magnesium and zinc, but not calcium, were also found to attenuate the acute toxic effects of nickel, indicating a possible correlation between prevention of acute effects and reduction in tumorigenicity. Zinc, which antagonizes cadmium tumorigenicity in the rat testis, was found to reduce markedly cadmium uptake into isolated testicular interstitial cells. Also, zinc was found to inhibit strongly cadmium binding to DNA in vitro.  相似文献   
5.
Summary Pedigree analyses of individual yeast cells recovering from DNA damage were performed and time intervals between morphological landmark events during the cell cycle (bud emergence and cell separation), were recorded for three generations. The associated nuclear behavior was monitored with the aid of DAPI staining. The following observations were made: (1) All agents tested (X-rays, MMS, EMS, MNNG, nitrous acid) delayed the first bud emergence after treatment, which indicates inhibition of the initiation of DNA replication. (2) Cells that survived X-irradiation progressed further through the cell cycle in a similar way to control cells. (3) Progress of chemically treated cells became extremely asynchronous because surviving cells stayed undivided for periods of varying length. (4) Prolongation of the time between bud emergence and cell separation was most pronounced for cells treated with the alkylating agents MMS and EMS. This is interpreted as retardation of ongoing DNA synthesis by persisting DNA adducts. (5) Cell cycle prolongation in the second and third generation after treatment was observed only with MMS treated cells. (6) In all experiments, individual cells of uniformly treated populations exhibited highly variable responses.Abbreviations DAPI 4,6-diamidino-2-phenyl-indole - EMS ethyl methanesulfonate - MMS methyl methanesulfonate - MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   
6.
The rapid DNA sequencing system based on the single-stranded bacteriophage M13 and the chain-terminator method has been used to look directly for mutational alterations. A small DNA fragment that primes DNA synthesis through the N-terminal 200 base pairs of the beta-galactosidase gene was prepared, and used to detect changes in base sequence among phages that give white plaques after treatment of the host cells with bleomycin. Bleomycin treatment of E. coli in which M13 mp2 was growing gave an increase in white plaque frequency. DNA sequence analysis of phage from 7 independent mutant plaques showed them all to have a frameshift mutation.  相似文献   
7.
Abstract

TGR5 is the G-protein–coupled bile acid-activated receptor, found in many human and animal tissues. Considering different endocrine and paracrine functions of bile acids, the current review focuses on the role of TGR5 as a novel pharmacological target in the metabolic syndrome and related disorders, such as diabetes, obesity, atherosclerosis, liver diseases and cancer. TGR5 ligands improve insulin sensitivity and glucose homeostasis through the secretion of incretins. The bile acid/TGR5/cAMP signaling pathway increases energy expenditure in brown adipose tissue and skeletal muscle. Activation of TGR5 in macrophages inhibits production of proinflammatory cytokines and attenuates the development of atherosclerosis. This receptor has been detected in many cell types of the liver where it has anti-inflammatory effects, thus reducing liver steatosis and damage. TGR5 also modulates hepatic microcirculation and fluid secretion in the biliary tree. In cell culture models TGR5 has been linked to signaling pathways involved in metabolism, cell survival, proliferation and apoptosis, which suggest a possible role of TGR5 in cancer development. Despite the fact that TGR5 ligands may represent novel drugs for prevention and treatment of different aspects of the metabolic syndrome, clinical studies are awaited with the perspective that they will complete TGR5 biology and identify efficient and safe TGR5 agonists.  相似文献   
8.
The levels of benzo(a)pyrene diol-epoxide (BPDE)-DNA adducts and polycyclic aromatic hydrocarbons (PAH) were analysed in a limited number of samples of autoptic lung tissue obtained from non-professionally exposed male (n= 13) and female (n= 12) non-smokers in an attempt to evaluate the relationship between gender, lung PAH levels (n= 25) and susceptibility to BPDE-DNA adduct formation (n= 18). Lung concentrations of chrysene, benzo(g,h,i)perylene and benzo(a)pyrene were significantly higher in males than in females (P  相似文献   
9.
Sandy Kennedy 《Biomarkers》2013,18(4):269-290
Proteomics, i.e. the high throughput separation, display and identification of proteins, has the potential to be a powerful tool in drug development. It could increase the predictability of early drug development and identify non-invasive biomarkers of toxicity or efficacy. This review provides an introduction to modern proteomics, with particular reference to applications in toxicology. A literature search was carried out to identify studies in two broad classes: screening/predictive toxicology, and mechanistic toxicology. The strengths and limitations of current methods and the likely impact of techniques in drug development are also considered. Proteomics can increase the speed and sensitivity of toxicological screening by identifying protein markers of toxicity. Proteomics studies have already provided insights into the mechanisms of action of a wide range of substances, from metals to peroxisome proliferators. Current limitations involving speed of throughput are being overcome by increasing automation and the development of new techniques. The isotope-coded affinity tag (ICAT) method appears particularly promising. The application of proteomics to drug development has given rise to the new field of pharmacoproteomics. New associations between proteins and toxicopathological effects are constantly being identified, and major progress is on the horizon as we move into the post-genomic era.  相似文献   
10.
Cytochrome P450 enzymes have major roles in the metabolism of steroids, drugs, carcinogens, eicosanoids, and numerous other chemicals. The P450s are collectively considered the most diverse catalysts known in biochemistry, although they operate from a basic structural fold and catalytic mechanism. The four minireviews in this thematic series deal with the unusual aspects of catalytic reactions and electron transfer pathway organization, the structural diversity of P450s, and the expanding roles of P450s in disease and medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号