首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   1篇
  2021年   1篇
  2019年   8篇
  2018年   5篇
  2017年   5篇
  2016年   3篇
  2015年   3篇
  2014年   6篇
  2013年   6篇
  2012年   1篇
  2011年   1篇
  2009年   5篇
  2008年   3篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   3篇
  1993年   2篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
1.
《IRBM》2019,40(6):313-319
BackgroundIn a dental implant/bone system, the design factors affect the value and distributions of stress and deformations that plays a pivotal role on the stability, durability and lifespan of the implant/bone system.ObjectiveThe aim of this study was to compare the influence of different abutment designs on the biomechanical behavior of one-piece zirconia dental implants and their surrounding bone tissues using three-dimensional finite element analysis.MethodsA three-dimensional geometrical model of a zirconia dental implant and its surrounding bone tissue were created. The occlusal loading force applied to the prosthetic abutments was a combination of 114.6 N in the axial direction, 17.1 N in the lingual direction and 23.4 N toward the mesial direction where these components represent masticatory force of 118.2 N in the angle of approximately 75° to the occlusal plane.ResultsThe system included implant abutment Model 01 showed a decrease of 9.58%, 9.92% and 3.62% at least in the average value of maximum von Mises stress compared to Model 02, Model 03 and Model 04 respectively. The results also showed that the system included implant abutment Model 01 decreases the average value of maximum deformation of 16.96%, 7.17% and 9.47% at least compared to Model 02, Model 03 and Model 04 respectively.ConclusionThe one-piece zirconia dental implant abutment Model 01 presents a better biomechanical behavior in the peri-implant bone than others. It can efficiently distribute the applied load and present more homogeneous behavior of stress distribution and has less deformation than others, which will enhance the stability of implant/bone system and prolong its lifespan.  相似文献   
2.
3.
Homoiologies are homoplasies that are caused by nongenetic environmental factors. The homoiology hypothesis predicts that osseous regions subject to repeated biomechanical stress during growth should be more variable and, therefore, less reliable for the reconstruction of phylogeny compared with osseous regions relatively unaffected by stress. Previous studies based on the analysis of multiple primate species found that regions of the cranium subject to masticatory-induced stress were significantly more variable than non-masticatory regions, as predicted by the homoiology hypothesis. However, these studies also found that the masticatory regions were no less reliable for reconstructing primate phylogenetic relationships when subjected to parsimony analysis. It was suggested, therefore, that homoiology may be a more potent problem for the reconstruction of phylogeny at the intraspecific level rather than interspecific phylogenetics. This suggestion was tested here using matched molecular and craniometric data for 12 modern human populations. The results show that, as predicted by the homoiology hypothesis, regions of the human cranium related to mastication were more variable than non-masticatory regions. However, masticatory regions were no less reliable for inferring human population history. Therefore, the results match those found from the interspecific analysis of primate species and do not support the suggestion that homoiology is a greater problem for the analysis of intraspecific taxa. The results also suggest that within-taxon variability cannot be relied upon to predict the phylogenetic efficacy of morphometric characters.  相似文献   
4.
5.
Tissue overloading is a major contributor to shoulder musculoskeletal injuries. Previous studies attempted to use regression-based methods to predict muscle activities from shoulder kinematics and shoulder kinetics. While a regression-based method can address co-contraction of the antagonist muscles as opposed to the optimization method, most of these regression models were based on limited shoulder postures. The purpose of this study was to develop a set of regression equations to predict the 10th percentile, the median, and the 90th percentile of normalized electromyography (nEMG) activities from shoulder postures and net shoulder moments. Forty participants generated various 3-D shoulder moments at 96 static postures. The nEMG of 16 shoulder muscles was measured and the 3-D net shoulder moment was calculated using a static biomechanical model. A stepwise regression was used to derive the regression equations. The results indicated the measured range of the 3-D shoulder moment in this study was similar to those observed during work requiring light physical capacity. The r2 of all the regression equations ranged between 0.228 and 0.818. For the median of the nEMG, the average r2 among all 16 muscles was 0.645, and the five muscles with the greatest r2 were the three deltoids, supraspinatus, and infraspinatus. The results can be used by practitioners to estimate the range of the shoulder muscle activities given a specific arm posture and net shoulder moment.  相似文献   
6.

Purpose

Today's orthotics should be designed to apply the external orthosis moment to the knee joint solely during the stance phase instead of the entire gait cycle. The aim of this study was to validate the reliability of a simple device for measuring forces at the leg–orthosis interface and describe the behavior of an innovating dynamic unloader knee brace built to interrupt its mechanical action during large knee flexion (swing phase of gait).

Methods

A compression testing machine was used to apply known (standard) forces to the device (modeled forces) and the results were compared.

Results

The low absolute mean bias (4%), the narrow agreement limits associated with the Bland and Altman analysis as well as the significant linear correlation (r=0.99; p<0.001) validate the agreement between standard and modeled forces. Likewise, the low standard error of measurement between trials (1.3%) and the intraclass correlation coefficient (1.00) reflect high test-retest reliability.

Conclusion

These results demonstrate the validity of the proposed device for measuring constraints induced by the dynamic unloader knee brace. An example of an application is provided through an orthosis moment calculation using kinematic data, which reveal a changeable mechanical action, necessary to improve comfort resulting in potentially better compliance.  相似文献   
7.
The aim of this study was to compare the effects of static stretching, proprioceptive neuromuscular facilitation (PNF) stretching and Mulligan technique on hip flexion range of motion (ROM) in subjects with bilateral hamstring tightness. A total of 40 students (mean age: 21.5±1.3 years, mean body height: 172.8±8.2 cm, mean body mass index: 21.9±3.0 kg · m-2) with bilateral hamstring tightness were enrolled in this randomized trial, of whom 26 completed the study. Subjects were divided into 4 groups performing (I) typical static stretching, (II) PNF stretching, (III) Mulligan traction straight leg raise (TSLR) technique, (IV) no intervention. Hip flexion ROM was measured using a digital goniometer with the passive straight leg raise test before and after 4 weeks by two physiotherapists blinded to the groups. 52 extremities of 26 subjects were analyzed. Hip flexion ROM increased in all three intervention groups (p<0.05) but not in the no-intervention group after 4 weeks. A statistically significant change in initial–final assessment differences of hip flexion ROM was found between groups (p<0.001) in favour of PNF stretching and Mulligan TSLR technique in comparison to typical static stretching (p=0.016 and p=0.02, respectively). No significant difference was found between Mulligan TSLR technique and PNF stretching (p=0.920). The initial–final assessment difference of hip flexion ROM was similar in typical static stretching and no intervention (p=0.491). A 4-week stretching intervention is beneficial for increasing hip flexion ROM in bilateral hamstring tightness. However, PNF stretching and Mulligan TSLR technique are superior to typical static stretching. These two interventions can be alternatively used for stretching in hamstring tightness.  相似文献   
8.
Rodent models are commonly used to investigate tendon healing, with the biomechanical and structural properties of the healed tendons being important outcome measures. Tendon storage for later testing becomes necessary when performing large experiments with multiple time-points. However, it is unclear whether freezing rodent tendons affects their material properties. Thus the aim of this study was to determine whether freezing rat Achilles tendons affects their biomechanical or structural properties. Tendons were frozen at either −20 °C or −80 °C directly after harvesting, or tested when freshly harvested. Groups of tendons were subjected to several freeze-thaw cycles (1, 2, and 5) within 3 months, or frozen for 9 months, after which the tendons were subjected to biomechanical testing. Additionally, fresh and thawed tendons were compared morphologically, histologically and by transmission electron microscopy. No major differences in biomechanical properties were found between fresh tendons and those frozen once or twice at −20 °C or −80 °C. However, deterioration of tendon properties was found for 5-cycle groups and both long-term freezing groups; after 9 months of freezing at −80 °C the tear resistance of the tendon was reduced from 125.4 ± 16.4N to 74.3 ± 18.4N (p = 0.0132). Moreover, tendons stored under these conditions showed major disruption of collagen fibrils when examined by transmission electron microscopy. When examined histologically, fresh samples exhibited the best cellularity and proteoglycan content of the enthesis. These properties were preserved better after freezing at −80 °C than after freezing at −20 °C, which resulted in markedly smaller chondrocytes and less proteoglycan content. Overall, the best preservation of histological integrity was seen with tendons frozen once at −80 °C. In conclusion, rat Achilles tendons can be frozen once or twice for short periods of time (up to 3 months) at −20 °C or −80 °C for later testing. However, freezing for 9 months at either −20 °C or −80 °C leads to deterioration of certain parameters.  相似文献   
9.
Musculo-skeletal allografts sterilized and deep frozen are among the most common human tissue to be preserved and utilized in modern medicine. The effects of a long deep freezing period on cortical bone has already been evaluated and found to be insignificant. However, there are no reports about the influences of a protracted deep freezing period on osteochondral allografts. One hundred osteochondral cylinders were taken from a fresh specimen and humeral heads of 1 year, 2 years, 3 years and 4 year old bones. Twenty chips from each period, with a minimum of 3 chips per humeral head. Each was mechanically tested by 3 point compression. The fresh osteochondral allografts were significantly mechanically better than the deep frozen osteochondral allografts. There was no statistical significant time dependent difference between the deep frozen groups in relation to the freezing period. Therefore, we conclude that, from the mechanical point of view deep freezing of osteochondral allografts over a period of 4 years, is safe without further deterioration of the biomechanical properties of the osteochondral allografts.  相似文献   
10.
In vitro angiogenesis assays have shown that tubulogenesis of endothelial cells within biogels, like collagen or fibrin gels, only appears for a critical range of experimental parameter values. These experiments have enabled us to develop and validate a theoretical model in which mechanical interactions of endothelial cells with extracellular matrix influence both active cell migration--haptotaxis--and cellular traction forces. Depending on the number of cells, cell motility and biogel rheological properties, various 2D endothelial patterns can be generated, from non-connected stripe patterns to fully connected networks, which mimic the spatial organization of capillary structures. The model quantitatively and qualitatively reproduces the range of critical values of cell densities and fibrin concentrations for which these cell networks are experimentally observed. We illustrate how cell motility is associated to the self-enhancement of the local traction fields exerted within the biogel in order to produce a pre-patterning of this matrix and subsequent formation of tubular structures, above critical thresholds corresponding to bifurcation points of the mathematical model. The dynamics of this morphogenetic process is discussed in the light of videomicroscopy time lapse sequences of endothelial cells (EAhy926 line) in fibrin gels. Our modeling approach also explains how the progressive appearance and morphology of the cellular networks are modified by gradients of extracellular matrix thickness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号