首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2014年   1篇
  2013年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有7条查询结果,搜索用时 203 毫秒
1
1.
Actin dynamics are necessary at multiple steps in the formation of multinucleated muscle cells. BAR domain proteins can regulate actin dynamics in several cell types, but have been little studied in skeletal muscle. Here, we identify novel functions for the N-BAR domain protein, Bridging integrator 3 (Bin3), during myogenesis in mice. Bin3 plays an important role in regulating myofiber size in vitro and in vivo. During early myogenesis, Bin3 promotes migration of differentiated muscle cells, where it colocalizes with F-actin in lamellipodia. In addition, Bin3 forms a complex with Rac1 and Cdc42, Rho GTPases involved in actin polymerization, which are known to be essential for myotube formation. Importantly, a Bin3-dependent pathway is a major regulator of Rac1 and Cdc42 activity in differentiated muscle cells. Overall, these data classify N-BAR domain proteins as novel regulators of actin-dependent processes in myogenesis, and further implicate BAR domain proteins in muscle growth and repair.  相似文献   
2.
PACSINs are intracellular adapter proteins involved in vesicle transport, membrane dynamics and actin reorganisation. In this study, we report a novel role for PACSIN proteins as components of the centrosome involved in microtubule dynamics. Glutathione S-transferase (GST)-tagged PACSIN proteins interacted with protein complexes containing α- and γ-tubulin in brain homogenate. Analysis of cell lysates showed that all three endogenous PACSINs co-immunoprecipitated dynamin, α-tubulin and γ-tubulin. Furthermore, PACSINs bound only to unpolymerised tubulin, not to microtubules purified from brain. In agreement, the cellular localisation of endogenous PACSIN 2 was not affected by the microtubule depolymerising reagent nocodazole. By light microscopy, endogenous PACSIN 2 localised next to γ-tubulin at purified centrosomes from NIH 3T3 cells. Finally, reduction of PACSIN 2 protein levels with small-interfering RNA (siRNA) resulted in impaired microtubule nucleation from centrosomes, whereas microtubule centrosome splitting was not affected, suggesting a role for PACSIN 2 in the regulation of tubulin polymerisation. These findings suggest a novel function for PACSIN proteins in dynamic microtubuli nucleation.  相似文献   
3.
Yoon T  Kim M  Lee K 《FEBS letters》2006,580(14):3558-3564
Translationally controlled tumor protein (TCTP) has both extra- and intracellular functions. Our group recently reported that TCTP interacts with Na,K-ATPase and suppresses its activity. Our studies led to the identification of sorting nexin 6 (SNX6) which binds with TCTP as a potential negative regulator of TCTP. SNX6 does not interact directly with any cytoplasmic domains of Na,K-ATPase. However, when overexpressed, it restores the Na,K-ATPase activity suppressed by TCTP. This was confirmed by measurements of purified plasma membrane Na,K-ATPase activity after incubation with recombinant TCTP and SNX6. SNX6 alone has no effect on Na,K-ATPase activity, but activates Na,K-ATPase via inhibition of TCTP. Inhibition of endogenous TCTP by the overexpression of SNX6 or knockdown of TCTP expression by siTCTP increased Na,K-ATPase activity above the basal level. The interaction between SNX6 and TCTP thus appears to regulate Na,K-ATPase activity.  相似文献   
4.
The particular compositions of the intracellular membrane organelles rely on the proteins and lipids received frequently through membrane trafficking. The delivery of these molecules is driven by the membrane-bound organelles known as transport carriers (TCs). Advanced microscopy approaches have revealed that TC morphology ranges from small vesicles to complex tubular membrane structures. These tubular TCs (TTCs) support effectively both sorting and transport events within the biosynthetic and endocytic pathways, while a coherent picture of the processes that define the formation and further fate of TTCs is still missing. Here, we present an overview of the mechanisms operating during the TTC life cycle, as well as of the emerging role of tubular carriers in different intracellular transport routes.  相似文献   
5.
The protein kinase C and casein kinase 2 substrates in neurons (PACSINs) represent a subfamily of membrane-binding proteins characterized by an amino-terminal Bin-Amphiphysin-Rvs (F-BAR) domain. PACSINs link membrane trafficking with actin dynamics and regulate the localization of distinct cargo molecules. The F-BAR domain forms a dimer essential for lipid binding. We have obtained crystals of authentic murine PACSIN 2 that contain an ordered F-BAR domain, indicating that additional domains are flexibly connected to F-BAR. The structure shares similarity to other BAR domains and exhibits special features unique to PACSINs. These include the uneven distribution of charged residues on the concave molecular surface and a so-called wedge loop that is driven into the membrane upon binding of PACSIN. The murine PACSIN 2 F-BAR domain requires dimerization for sensing of curved membranes, and the present structure also provides a mechanism for higher-order oligomer formation. Importantly, comparison of murine with human and Drosophila PACSIN 2 F-BAR domains reveals stark differences in the orientation of distal helical segments leading to a wider crescent shape of murine PACSIN 2. We define hinge residues for these movements that may help PACSINs sense and concomitantly reinforce membrane curvature.  相似文献   
6.
The ankyrin repeat (ANK) protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, no detailed information concerning this family is available for tomato (Solanum lycopersicum) due to the limited information on whole genome sequences. In this study, we identified a total of 130 ANK genes in tomato genome (SlANK), and these genes were distributed across all 12 chromosomes at various densities. And chromosomal localizations of SlANK genes indicated 25 SlANK genes were involved in tandem duplications. Based on their domain composition, all of the SlANK proteins were grouped into 13 subgroups. A combined phylogenetic tree was constructed with the aligned SlANK protein sequences. This tree revealed that the SlANK proteins comprise five major groups. An analysis of the expression profiles of SlANK genes in tomato in different tissues and in response to stresses showed that the SlANK proteins play roles in plant growth, development and stress responses. To our knowledge, this is the first report of a genome-wide analysis of the tomato ANK gene family. This study provides valuable information regarding the classification and putative functions of SlANK genes in tomato.  相似文献   
7.
The autophagy core machinery is essentially conserved in eukaryotic cells for autophagy regulation. However, the underlying mechanisms for autophagosome formation in plant cells remain elusive. We have recently demonstrated that SH3 domain-containing protein 2 (SH3P2), a BAR (Bin-Amphiphysin-Rvs) domain protein, functions as a novel regulator for autophagosome biogenesis in Arabidopsis thaliana. Using SH3P2 and its GFP fusion as probes, we have characterized the dynamics and structures of autophagosome formation in plant cells. The phagophore assembly site, marked by SH3P2, is identified as having a close connection with the ER. SH3P2 also binds to phosphatidylinositol 3-phosphate (PtdIns3P) and functions downstream of the phosphatidylinositol 3-kinase (PtdIns3K) complex. Thus, SH3P2 serves as a novel membrane-associated protein in regulating autophagosome formation in Arabidopsis thaliana.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号