首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2013年   1篇
  2003年   2篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1982年   2篇
  1979年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
The anterior position of the human foramen magnum is often explained as an adaptation for maintaining balance of the head atop the cervical vertebral column during bipedalism and the assumption of orthograde trunk postures. Accordingly, the relative placement of the foramen magnum on the basicranium has been used to infer bipedal locomotion and hominin status for a number of Mio-Pliocene fossil taxa. Nonetheless, previous studies have struggled to validate the functional link between foramen magnum position and bipedal locomotion. Here, we test the hypothesis that an anteriorly positioned foramen magnum is related to bipedalism through a comparison of basicranial anatomy between bipeds and quadrupeds from three mammalian clades: marsupials, rodents and primates. Additionally, we examine whether strepsirrhine primates that habitually assume orthograde trunk postures exhibit more anteriorly positioned foramina magna compared with non-orthograde strepsirrhines. Our comparative data reveal that bipedal marsupials and rodents have foramina magna that are more anteriorly located than those of quadrupedal close relatives. The foramen magnum is also situated more anteriorly in orthograde strepsirrhines than in pronograde or antipronograde strepsirrhines. Among the primates sampled, humans exhibit the most anteriorly positioned foramina magna. The results of this analysis support the utility of foramen magnum position as an indicator of bipedal locomotion in fossil hominins.  相似文献   
2.
A discriminant analysis was performed on 226 ceboid skulls using data on emissary foramina size and shape. The purposes of the study are to 1) measure the success with which these discriminating variables can distinguish among platyrrhine genera and 2) derive a set of classification functions which will permit the classification of new cases with unknown group membership (i.e., fossil skulls). This technique is able to correctly classify 80% of the 226 ceboid skulls. Support is given to the allocation of Chiropotes, Cacajao, and Pithecia into one morphologically unified subfamily, Pitheciinae. Alouatta, Ateles, and Lagothrix also share many similarities in emissary foramina size and shape and their inclusion into one subfamily, Atelinae, is probably warranted. The distinctiveness of Cebus in these same morphological features is apparent. Possibilities for extending this procedure to study fossil lineages in platyrrhines are discussed.  相似文献   
3.
A skull of Ignacius graybullianus (USNM 421608) was studied using ultra high resolution X-ray computed tomography (uhrCT). The anatomy of the middle ear in this specimen was previously studied through partial removal of the auditory bulla on one side. The data now available allow for examination of the others unprepared ear, which is more completely preserved, as well as adding to the information available about the previously studied ear. Analysis of the relationships between the bones making up the auditory bulla confirms previous assertions that it is formed from the entotympanic, and not from the petrosal, basioccipital, or basisphenoid. Contrary to previous reconstructions of the middle ear anatomy in all known plesiadapiforms, this specimen exhibits a bony canal for the promontorial artery and/or internal carotid nerves running across the lateral extreme of the promontorium. The identification of this structure is confirmed by the clear presence of a lumen, and its origination at a posterior carotid foramen (pcf) in a position that corresponds to that identified in previous studies of the paromomyid basicranium (Am. J. Phys. Anthropol., 36 (1972) 59, Am. J. Phys. Anthropol., 89 (1992) 477). Remnants of this canal are present bilaterally in USNM 421608, which additionally supports its identification. The presence of bony canals for branches of the internal carotid artery and the internal carotid nerves is a feature seen in scandentians and euprimates that is missing in dermopterans. The unusual lateral route followed by the internal carotid nerves is a primitive euprimate feature missing in all other archontans. As such, this evidence is consistent with a close euprimate-paromomyid relationship, and the inclusion of the latter in the order Primates. The discovery of this feature in paromomyids after almost 30 years of study of the ear region of this family acts as a cautionary note to the interpretation of the middle ear in damaged specimens.  相似文献   
4.
The basicranium is the keystone of the primate skull, and understanding its morphological interdependence on surrounding soft-tissue structures, such as the brain, can reveal important mechanisms of skull development and evolution. In particular, several extensive investigations have shown that, across extant adult primates, the degree of basicranial flexion and petrous orientation are closely linked to increases in brain size relative to cranial base length. The aim of this study was to determine if an equivalent link exists during prenatal life. Specific hypotheses tested included the idea that increases in relative endocranial size (IRE5), relative infratentorial size (RIE), and differential encephalization (IDE) determine the degree of basicranial flexion and coronal petrous reorientation during non-hominoid primate fetal development. Cross-sectional fetal samples of Alouatta caraya (n=17) and Macaca nemestrina (n=24) were imaged using high-resolution magnetic resonance imaging (hrMRI). Cranial base angles (CBA), petrous orientations (IPA), base lengths, and endocranial volumes were measured from the images. Findings for both samples showed retroflexion, or flattening, of the cranial base and coronal petrous reorientation as well as considerable increases in absolute and relative brain sizes. Although significant correlations of both IRE5 and RIE were observed against CBA and IPA, the correlation with CBA was in the opposite direction to that predicted by the hypotheses. Variations of IDE were not significantly correlated with either angle. Correlations of IPA with IRE5 and RIE appeared to support the hypotheses. However, partial coefficients computed for all significant correlations indicated that changes to the fetal non-hominoid primate cranial base were more closely related to increases in body size than the hypothesized influence of relative brain enlargement. These findings were discussed together with those from a previous study of modern human fetuses.  相似文献   
5.
6.
New crania of the Oligocene anthropoidean Aegyptopithecus provide a test of the hypothesized tarsier-anthropoidean clade. Three cranial characters shared by Tarsius and some modern anthropoideans (apical interorbital septum, postorbital septum, "perbullar" carotid pathway) were examined. 1) An apical interorbital septum is absent in Aegyptopithecus. A septum does occur in Galago senegalensis (Lorisidae) and Microcebus murinus (Cheirogaleidae), so the presence of a septum is not strong evidence favoring a tarsiiform-anthropoidean clade. 2) In Aegyptopithecus and other anthropoideans, the postorbital septum is formed mainly by a periorbital flange of the zygomatic that extends medially from the lateral orbital margin onto or near the braincase. The postorbital plate of Tarsius is formed by frontal and alisphenoid flanges that extend laterally from the braincase to the zygomatic's frontal process, which is not broader than the postorbital bars of other prosimians. Periorbital flanges evolved in Tarsius for support or protection of the enormous eyes, as suggested by the occurrence of maxillary and frontal flanges that cup portions of the eye but do not separate it from temporal muscles. 3) The internal carotid artery of Aegyptopithecus enters the bulla posteriorly and crosses the anteroventral part of the promontorium. The tympanic cavity was probably separated from the anteromedial cavity by a septum stretching from the carotid channel to the ventrolateral bullar wall. In Tarsius, the carotid pathway is prepromontorial, and a septum stretches from the carotid channel to the posteromedial bullar wall. Quantitative analyses indicate that anterior carotid position has evolved because of erect head posture. The cranium of Oligocene anthropoideans thus provides no support for the hypothesized tarsier-anthropoidean clade.  相似文献   
7.
The position of upper respiratory structures, such as the larynx, has proven to be of great importance in determining an animal’s breathing, swallowing and vocalizing abilities. Studies on living mammals have also shown that the shape of the basicranium is related to the position of the larynx. This information has been of value in using the skull base as a means to reconstruct the upper respiratory tract of fossil hominids. Ongoing comparative and experimental studies of this region are adding new information on the mechanical relationship of the skull base to contiguous areas of the respiratory tract. For example, examination of the region in mammals disparate from humans, such as cetaceans, and experimental work on the region in rats, is adding new data on how the larynx and skull base may functionally interact.  相似文献   
8.
Endocasts from 378 rhesus macaque skulls from the Cayo Santiago skeletal collection were measured to determine the effects of age and gender on the position and orientation of the foramen magnum. The foramen magnum migrates from a rostral to a caudal position and its angle changes during postnatal development. The angles and relative positions of the foramen magnum are similar for both genders of infants and for both genders of adults. However, analyses of linear response and plateau (LRP) functions reveal significant differences between males and females in the timing of reorientation of the angle and migration of the foramen magnum. The mean adult angle and relative position of the foramen magnum are reached by 4.7 years in females, but they do not achieve their adult values until 7.1 years in males. A similar pattern is observed for the brainstem region of the basicranium. Mean adult lengths of the brainstem region are reached at 5.2 years in females and 7.1 years in males. The relationships between cranial capacity, the growth pattern of the brainstem, and the pattern of change for the angle and the relative position of the foramen magnum are examined. Quantification of the effects of age and gender on the location of the foramen magnum in a large sample of endocasts from one species of higher primate has potential implications for research on human development, and for interpretation of juvenile specimens in the hominid fossil record.  相似文献   
9.
Basicranial anatomy of Plio-Pleistocene hominids from East and South Africa   总被引:1,自引:0,他引:1  
The results of a metrical analysis of the basicranium of 19 Plio-Pleistocene fossil hominid crania are presented. The sample includes crania attributed to Australopithecus africanus, Australopithecus boisei, and robustus, and Homo erectus as well as crania whose attribution is still under discussion. These results confirm significant differences between the cranial base patterns of the "gracile" and "robust" australopithecines and the three crania attributed to Homo erectus have a pattern which resembles that of modern humans. None of the crania examined from East Africa sites have base patterns which resemble that of the "gracile" australopithecines. The crania KNM-ER 407 and 732 have patterns which are compatible with them being smaller-bodied females of Australopithecus boisei; KNM-ER 1470 and 1813 have base patterns which most closely resemble that of Homo erectus. The cranial base pattern of KNM-ER 1805 is compatible with its inclusion in either Australopithecus boisei or Homo. When account is taken of the immaturity of Taung, the evidence of its cranial base pattern suggests that if it had reached adulthood it would have resembled the "gracile" australopithecine crania from Sterkfontein and Makapansgat.  相似文献   
10.
The subarcuate fossa of the petrosal bone houses the petrosal lobule of the cerebellar paraflocculus. Although the subarcuate fossa can be extensive, little is known about its relative size and distribution in primates. Studies indicate parafloccular involvement with cerebellar areas coordinating vestibular, visual, auditory, and locomotor systems. Hypotheses have proposed a role for the paraflocculus in vestibular-oculomotor integration, caudal muscle control, autonomic function, and visual-manual predation. This study examines the morphology and relative extent of the subarcuate fossa/petrosal lobule in a range of living primates. Methods include study of postmortem specimens representing nine mammalian orders, and qualification of the volume of the subarcuate fossa and endocranial cavity in 155 dry primate crania of 36 genera. Results show that, in mammals, the size and morphology of the petrosal lobule is directly related to that of the subarcuate fossa. Craniometric analysis shows that the ratio of subarcuate fossa volume to endocranial volume is largest in lemuriforms. The largest ratio is in Microcebus and Hapalemur. Lorisids show a significant reduction in the size of the subarcuate fossa to almost 50% below the lemuriform mean. Tarsius is near the lemuriform mean. Among platyrrhines, the ratio is high, but significantly reduced compared to lemuiforms. The highest platyrrhine ratio is seen in Ateles, the lowest in Saimiri and Alouatta. Atelids are significantly elevated compared to cebids. In cercopithecids, the fossa is significantly reduced compared to platyrrhines. The trend toward reduction of the cercopithecid fossa is most pronounced in Theropithecus and least evident in Presbytis. In hominoids, the fossa is present only in Hylobates. In great apes and humans, other than Gorilla, the petromastoid canal occupies a similar location to the subarcuate fossa of other primates, but is not homologous to it. Neither the subarcuate fossa nor the petromastoid canal are present in Gorilla. A graded reduction of the subarcuate fossa/petrosal lobule is evident among primates which evolved later in time. The relative size of this cerebellar lobule within primates may reflect size-related factors and/or degree of neocortical evolution as these relate to usage of a specific sensory-mediated locomotor behavior. The subarcuate fossa may serve as an indicator to the differentiation of the petrosal lobule of the paraflocculus in fossil forms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号