首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   11篇
  2023年   1篇
  2022年   1篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2017年   7篇
  2016年   4篇
  2015年   8篇
  2014年   8篇
  2013年   7篇
  2012年   3篇
  2011年   6篇
  2010年   6篇
  2009年   11篇
  2008年   10篇
  2007年   10篇
  2006年   14篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   10篇
  2001年   5篇
  2000年   5篇
  1999年   9篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1994年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有177条查询结果,搜索用时 31 毫秒
1.
Abstract

Pest problems involve people who value a resource affected by a pest that is managed by people, ideally the same as those who value the resource. Management that is not inclusive of pests, resources, people, and their interactions usually fails. Mammalian pests in New Zealand are of two sorts: those that are pests in their native land (usually r-strategists), and those that are not (usually K-strategists). The impact on New Zealand resources of r-strategists tends to be periodic and acute when their densities are high. Control works best against them when it is applied once densities become intolerable, or once such densities can be predicted. The impact of K-strategists is more stable but is chronic. Control operations against them need to be sustained and regular to retain the stability of the pest-resource interaction, but to drive it in favour of the resource. The basic strategies to deal with the impact of pests are: those for which a one-off management action has a permanent benefit (e.g., eradication); those that require ongoing action to gain a permanent benefit (e.g., sustained control); and those for which no management action is possible or justified. Idealist and cynical approaches to pest policies are discussed and rejected in favour of a pragmatic policy.  相似文献   
2.
Assessing diet variability is of main importance to better understand the biology of bats and design conservation strategies. Although the advent of metabarcoding has facilitated such analyses, this approach does not come without challenges. Biases may occur throughout the whole experiment, from fieldwork to biostatistics, resulting in the detection of false negatives, false positives or low taxonomic resolution. We detail a rigorous metabarcoding approach based on a short COI minibarcode and two‐step PCR protocol enabling the “all at once” taxonomic identification of bats and their arthropod prey for several hundreds of samples. Our study includes faecal pellets collected in France from 357 bats representing 16 species, as well as insect mock communities that mimic bat meals of known composition, negative and positive controls. All samples were analysed using three replicates. We compare the efficiency of DNA extraction methods, and we evaluate the effectiveness of our protocol using identification success, taxonomic resolution, sensitivity and amplification biases. Our parallel identification strategy of predators and prey reduces the risk of mis‐assigning prey to wrong predators and decreases the number of molecular steps. Controls and replicates enable to filter the data and limit the risk of false positives, hence guaranteeing high confidence results for both prey occurrence and bat species identification. We validate 551 COI variants from arthropod including 18 orders, 117 family, 282 genus and 290 species. Our method therefore provides a rapid, resolutive and cost‐effective screening tool for addressing evolutionary ecological issues or developing “chirosurveillance” and conservation strategies.  相似文献   
3.
After more than two centuries of research, more than 65,000 living and fossil ostracod species have been described and studied, yet much remains to be learned about this ancient, widespread and diverse group of bivalved arthropods. Their higher classification and phylogeny are subjects of vigorous debate, as is their position in the broader picture of crustacean phylogeny. At the same time, major advances in our understanding of ostracod lineages and their relationships are resulting from the application of innovative approaches and techniques. This preface provides a contextual overview of the 15 contributions to this volume, which resulted from the 14th International Symposium on Ostracoda (ISO2001) held in 2001at Shizuoka, Japan. As such it provides a cross-section of topics at the forefront of research on the evolution and diversity of Ostracoda, and indicates directions for future work.  相似文献   
4.
Phylogenetic relationships within the group of molting protostomes were reconstructed by comparing the sets of 18S and 28S rRNA gene sequences considered either separately or in combination. The reliability of reconstructions was estimated from the bootstrap indices for major phylogenetic tree nodes and from the degree of congruence of phylogenetic trees obtained by different methods. By either criterion, the phylogenetic trees reconstructed on the basis of both 18 and 28S rRNA gene sequences were better than those based on the 18S or 28S sequences alone. The results of reconstruction are consistent with the phylogenetic hypothesis classifying protostomes into two major clades: molting Ecdysozoa (Priapulida + Kinorhyncha, Nematoda + Nematomorpha, Onychophora + Tardigrada, Myriapoda + Chelicerata, and Crustacea + Hexapoda) and nonmolting Lophotrochozoa (Plathelminthes, Nemertini, Annelida, Mollusca, Echiura, and Sipuncula). Nematomorphs (Nematomorpha) do not belong to the clade Cephalorhyncha (Priapulida + Kinorhyncha). It is concluded that combined data on the 18S and 28S rRNA gene sequences provide a more reliable basis for phylogenetic inferences.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 4, 2005, pp. 590–601.Original Russian Text Copyright © 2005 by Petrov, Vladychenskaya.  相似文献   
5.
Abstract

Hairpin formations of decamers d(CGCG-TA-CGCG), d(CGCG-TG-CGCG), and their m5dC analogs are evidenced by the existence of biphasic absorbance melting profiles in which the lower transition temperature increases with increasing oligomer concentration, whereas the higher melting temperature is concentration independent. The corresponding temperature dependent CD intensity at 285 nm exhibits a maximum around 55°C. These observations are consistent with the interpretation that the lower temperature transition corresponds to the duplex to hairpin transformation while the melting of hairpins into single strands constitutes the higher temperature transition. The CD spectrum of the hairpin conformation appears to be characterized by a couplet with nearly equal positive and negative intensities at 285 and 255 nm, respectively, while a significantly smaller intensity at 285 nm is apparent for the duplex form. The hairpin conformation is suspected to contain a two-nucleotide loop. Titrations with NaCl further suggest that, in contrast to the TA sequence, the TG sequence with wobble base pairing favors Z formation under high salt conditions.  相似文献   
6.
During and after the Cambrian explosion, very large marine invertebrate species have evolved in several groups. Gigantism in Carboniferous land invertebrates has been explained by a peak in atmospheric oxygen concentrations, but Palaeozoic marine invertebrate gigantism has not been studied empirically and explained comprehensively. By quantifying the spatiotemporal distribution of the largest representatives of some of the major marine invertebrate clades (orthoconic cephalopods, ammonoids, trilobites, marine eurypterids), we assessed possible links between environmental parameters (atmospheric or oceanic oxygen concentrations, ocean water temperature or sea level) and maximum body size, but we could not find a straightforward relationship between both. Nevertheless, marine invertebrate gigantism within these groups was temporally concentrated within intervals of high taxonomic diversity (Ordovician, Devonian) and spatially correlated with latitudes of high occurrence frequency. Regardless of whether temporal and spatial variation in sampled diversity and occurrence frequency reflect true biological patterns or sampling controls, we find no evidence that the occurrences of giants in these groups were controlled by optimal conditions other than those that controlled the group as a whole; if these conditions shift latitudinally, occurrences of giants will shift as well. It is tempting to attribute these shifts to contemporary changes in temperature, oxygen concentrations in the atmosphere and the oceans as well as global palaeogeography over time, but further collection‐based studies are necessary on finer stratigraphic and phylogenetic resolution to corroborate such hypotheses and rule out sampling or collection biases.  相似文献   
7.
8.
The segmental architecture of the arthropod head is one of the most controversial topics in the evolutionary developmental biology of arthropods. The deutocerebral (second) segment of the head is putatively homologous across Arthropoda, as inferred from the segmental distribution of the tripartite brain and the absence of Hox gene expression of this anterior-most, appendage-bearing segment. While this homology statement implies a putative common mechanism for differentiation of deutocerebral appendages across arthropods, experimental data for deutocerebral appendage fate specification are limited to winged insects. Mandibulates (hexapods, crustaceans and myriapods) bear a characteristic pair of antennae on the deutocerebral segment, whereas chelicerates (e.g. spiders, scorpions, harvestmen) bear the eponymous chelicerae. In such hexapods as the fruit fly, Drosophila melanogaster, and the cricket, Gryllus bimaculatus, cephalic appendages are differentiated from the thoracic appendages (legs) by the activity of the appendage patterning gene homothorax (hth). Here we show that embryonic RNA interference against hth in the harvestman Phalangium opilio results in homeonotic chelicera-to-leg transformations, and also in some cases pedipalp-to-leg transformations. In more strongly affected embryos, adjacent appendages undergo fusion and/or truncation, and legs display proximal defects, suggesting conservation of additional functions of hth in patterning the antero-posterior and proximo-distal appendage axes. Expression signal of anterior Hox genes labial, proboscipedia and Deformed is diminished, but not absent, in hth RNAi embryos, consistent with results previously obtained with the insect G. bimaculatus. Our results substantiate a deep homology across arthropods of the mechanism whereby cephalic appendages are differentiated from locomotory appendages.  相似文献   
9.
I evaluated soil application of nitrogen fertilizer to 1‐year‐old, flood‐irrigated Salix exigua willows and Populus fremontii cottonwoods as a method for increasing arthropod abundances and biomasses (wet masses) available to insectivorous birds. Shrubs and trees, planted near the lower Colorado River in southeast California for wildlife habitat, were fertilized during April 2008. I collected spiders and insects monthly during the following May–August from unfertilized and fertilized plants by fumigating branches with insecticide. Percentages of N in leaves, and to a lesser extent percentages of water in branches, were greater on fertilized plants (averaging 2.5% N of dry mass) compared with unfertilized plants (1.6% N) in both species. Most arthropods collected were predaceous Araneae (44% of abundance, 52% of biomass) followed by phytophagous Homoptera (34%, 11%) and predaceous or phytophagous Heteroptera (10%, 11%). Abundances and biomasses of Araneae, Heteroptera, and all Arthropoda across months did not differ between unfertilized and fertilized plants in either species controlling for masses of sampled branches. In contrast, biomasses of Homoptera, mostly Cicadellidae followed by Aphididae, were 197% greater on fertilized willows and 228% greater on fertilized cottonwoods. Greater biomasses on fertilized plants were consistent across months. Biomasses of homopterans on branches of each species also increased as leaf N‐concentrations increased. Applying N‐fertilizer to willows and cottonwoods can increase leaf N‐contents and abundances and biomasses of Homoptera. Increased homopteran biomass on N‐fertilized plants may in turn diversify prey available to insectivorous birds.  相似文献   
10.
近年来在云南昆明附近的海口镇和大板桥地区发现大量的节肢动物卵形川滇虫化石,这些化石隶属于澄江生物群,其所处的地层是下寒武统玉案山组。卵形川滇虫化石的不断发掘使得对该属种化石的研究和认识能在很大程度上取得新的进展。文章基于相当数量化石的信息统计,首先对化石保存的多种方式进行总结并分析其埋藏时的环境条件,其次分析卵形川滇虫一些有趣的生活习性并初步划分卵形川滇虫生长中历经3次蜕皮的发育阶段;对雌雄性个体特征(包括外部形态和内部器官的解剖)进行对照性描述。文中揭示卵形川滇虫的生活环境及运动方式,并将卵形川滇虫与中寒武世瓦普塔虾进行较为详尽的比较,列举两者不可归为一属的可靠证据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号