首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   2篇
  国内免费   7篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   8篇
  2013年   3篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2008年   7篇
  2007年   11篇
  2006年   4篇
  2005年   9篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1995年   1篇
  1994年   5篇
  1993年   1篇
  1992年   1篇
  1991年   6篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
1.
Summary We have mapped and sequenced the globin gene and seven surrounding Alu repeat sequences in the orangutan globin gene cluster and have compared these and other orangutan sequences to orthologously related human sequences. Noncoding flanking and intron sequences, synonymous sites of , , and globin coding regions, and Alu sequences in human and orangutan diverge by 3.2%, 2.7%, and 3.7%, respectively. These values compare to 3.6% from DNA hybridizations and 3.4% from the globin gene region. If as suggested by fossil evidence and molecular clock calculations, human and orangutan lineages diverged about 10–15 MYA, the rate of noncoding DNA evolution in the two species is 1.0–1.5×10–9 substitutions per site per year. We found no evidence for either the addition or deletion of Alu sequences from the globin gene cluster nor is there any evidence for recent concerted evolution among the Alu sequences examined. Both phylogenetic and phenetic distance analyses suggest that Alu sequences within the and globin gene clusters arose close to the time of simian and prosimian primate divergence (about 50–60 MYA). We conclude that Alu sequences have been evolving at the rate typical of noncoding DNA for the majority of primate history.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   
2.
Genes for human U4 small nuclear RNA   总被引:10,自引:0,他引:10  
  相似文献   
3.
Summary We have determined the DNA sequence of a BALB/cTla region class I gene from the major histocompatibility complex (MHC) that had been identified previously as encoding a murine antigen by DNA-mediated gene transfer. Analysis of the DNA sequence shows, however, that this gene, the T1c gene from theTla c genotype, could not encode a TL antigen or any other functional class I molecule due to the presence of numerous stop codons and frameshift mutations in the coding regions. This result suggests that the earlier transformation data may have been incorrect or perhaps that the clone containing the T1c gene contains sequences that induced expression of a serologically reactiveTla gene in the genome of the recipient L cell. The T1c gene is structurally related to the previously sequenced T13c gene that encodes a serologically defined TL antigen. The 3 half of the T1c gene including exons 4, 5, 6, and the 3 untranslated region has about 85% nucleotide similarity (including introns) with the corresponding parts of the T13c gene; however, the 5 half of the T1c gene has little homology with the T13c gene. There is a sharp line of demarcation between the homologous and nonhomologous regions, and this border occurs precisely at a B2 Alu repeat sequence present in the T13c gene. This suggests that a recombination event took place here and that an Alu repeat sequence that is known to have characteristics of transposable elements played some role in a recombination or gene conversion event.  相似文献   
4.
5.
Alu elements are a class of repetitive DNA sequences found throughout the human genome that are thought to be duplicated via an RNA intermediate in a process termed retroposition. Recently inserted Alu elements are closely related, suggesting that they are derived from a single source gene or closely related source genes. Analysis of the type III collagen gene (COL3A1) revealed a polymorphic Alu insertion in intron 8 of the gene. The Alu insertion in the COL3A1 gene had a high degree of nucleotide identity to the Sb family of Alu elements, a family of older Alu elements. The Alu sequence was less similar to the consensus sequence for the PV or Sb2 subfamilies, subfamilies of recently inserted Alu elements. These data support the observations that at least three source genes are active in the human genome, one of which is distinct from the PV and Sb2 subfamilies and predates either of these two subfamilies. Appearance of the Alu insertion in different ethnic populations suggests that the insertion may have occurred in the last 100,000 years. This Alu insert should be a useful marker for population studies and for marking COL3A1 alleles.  相似文献   
6.
A human episomal sequence (HALF1) has been identified by its ability to restore expression of hepatic functions when used to transfect a rat dedifferentiated cell line. The genomic equivalent of this human episome (gHALF1) and its flanking sequences were analyzed. HALF1 itself does not present the characteristics of a transposable element but half of its sequence corresponds to retroposons, including Alu and L1 repeats and a processed pseudogene, known to transposevia RNA intermediates. The structural characteristics of these different kinds of retroposons and their origin and evolution were analyzed.  相似文献   
7.
Evolution of secondary structure in the family of 7SL-like RNAs   总被引:8,自引:0,他引:8  
Primate and rodent genomes are populated with hundreds of thousands copies of Alu and B1 elements dispersed by retroposition, i.e., by genomic reintegration of their reverse transcribed RNAs. These, as well as primate BC200 and rodent 4.5S RNAs, are ancestrally related to the terminal portions of 7SL RNA sequence. The secondary structure of 7SL RNA (an integral component of the signal recognition particle) is conserved from prokaryotes to distant eukaryotic species. Yet only in primates and rodents did this molecule give rise to retroposing Alu and B1 RNAs and to apparently functional BC200 and 4.5S RNAs. To understand this transition and the underlying molecular events, we examined, by comparative analysis, the evolution of RNA structure in this family of molecules derived from 7SL RNA.RNA sequences of different simian (mostly human) and prosimian Alu subfamilies as well as rodent B1 repeats were derived from their genomic consensus sequences taken from the literature and our unpublished results (prosimian and New World Monkey). RNA secondary structures were determined by enzymatic studies (new data on 4.5S RNA are presented) and/or energy minimization analyses followed by phylogenetic comparison. Although, with the exception of 4.5S RNA, all 7SL-derived RNA species maintain the cruciform structure of their progenitor, the details of 7SL RNA folding domains are modified to a different extent in various RNA groups. Novel motifs found in retropositionally active RNAs are conserved among Alu and B1 subfamilies in different genomes. In RNAs that do not proliferate by retroposition these motifs are modified further. This indicates structural adaptation of 7SL-like RNA molecules to novel functions, presumably mediated by specific interactions with proteins; these functions were either useful for the host or served the selfish propagation of RNA templates within the host genome.Abbreviations FAM fossil Alu element - FLAM free left Alu monomer - FRAM free right Alu monomer - L-Alu left Alu subunit - R-Alu right Alu subunit Correspondence to: D. LabudaDedicated to Dr. Robert Cedergren on the occasion of his 25th anniversary at the University of Montreal  相似文献   
8.
We have identified two types of structural elements in genomic DNA for annexin I that provide physical evidence of genetic events leading to conserved changes in gene structure. The sequence upstream of the transcribed region in human annexin I contained a rare, Alu-like repetitive element with flanking direct repeats, probably derived from the active BC200 gene via germline retroposition. Nucleotide substitutions in this BC200 insert relative to the 7SL gene and its absence in rodent annexins I identified it as a recent primate pseudogene. Phylogenetic analysis showed that the BC200 gene represents a new clade of primate Alu evolution that branched near the time of appearance of the progenitor to the free left Alu monomer, FLAM-C. Separate analysis identified a Z-DNA motif in pigeon annexin I intron 7 that may represent the vestigial recombination site involved in primordial assembly of the annexin tetrad. These distinct structural features in annexin I genes provide insight into the evolution of Alu repeats and the mechanism of annexin tetrad formation.  相似文献   
9.
Sequence analysis of a 237 kb genomic fragment from the central region of the MHC has revealed that the HLA-B and HLA-C genes are contained within duplicated segments peri-B (53 kb) and peri-C (48 kb), respectively, and separated by an intervening sequence (IF) of 30 kb. The peri-B and peri-C segments share at least 90% sequence homology except when interrupted by insertions/deletions including Alu, L1, an endogenous retrovirus, and pseudogenes. The sequences of peri-B, IF, and peri-C were searched for the presence of Alu elements to use as markers of evolution, chromosomal rearrangements, and polymorphism. Of 29 Alu elements, 14 were identified in peri-B, 11 in peri-C, and 4 in IF. The Alu elements in peri-B and peri-C clustered phylogenetically into two clades which were classified as ``preduplication' and ``postduplication' clades. Four Alu J elements that are shared by peri-B and peri-C and are flanked by homologous sequences in their paralogous locations, respectively, clustered into a ``preduplication' clade. By contrast, the majority of Alu elements, which are unique to either peri-B or peri-C, clustered into a postduplication clade together with the Alu consensus subfamily members ranging from platyrrhine-specific (Spqxcg) to catarrhine-specific Alu sequences (Y). The insertion of platyrrhine-specific Alu elements in postduplication locations of peri-B and peri-C implies that these two segments are the products of a duplication which occurred in primates prior to the divergence of the New World primate from the human lineage (35–44 mya). Examination of the paralogous Alu integration sites revealed that 9 of 14 postduplication Alu sequences have produced microsatellites of different length and sequence within the Alu 3′-poly A tail. The present analysis supports the hypothesis that HLA-B and HLA-C genes are products of an extended segmental duplication between 44 and 81 million years ago (mya), and that subsequent diversification of both genomic segments occurred because of the mobility and mutation of retroelements such as Alu repeats. Received: 21 May 1997 / Accepted: 9 July 1997  相似文献   
10.
We have determined the nucleotide sequence of an 841-bp fragment derived from a segment of the human genome previously cloned by Chumakov et al. [Gene 17 (1982) 19–26] and Zabarovsky et al. [Gene 23 (1983) 379–384] and containing regions homologous to the viral mos gene probe. This sequence displays homology with part of the coding region of the human and murine c-mos genes, contains several termination codons, and is interrupted by two Alu-family elements flanked by short direct repeats. Probably, the progenitor of the human c-mos gene was duplicated approximately at the time of mammalian divergence, was converted to a pseudogene, and acquired insertions of two Alu elements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号