首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   3篇
  国内免费   1篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2008年   2篇
  2007年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   3篇
  1997年   9篇
  1990年   2篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
Changes in the critical swimming speed (Ucrit, cm s?1) with ontogeny of 2·5–12·5 month‐old juvenile anadromous Chinese sturgeon Acipenser sinesis were measured in a modified Blazka‐type swimming tunnel. The absolute Ucrit increased with length, mass and age; the relative Ucrit (body lengths, s?1), however, decreased. Juvenile A. sinesis did not display a parr–smolt transformation at the length or age threshold to tolerate full‐strength seawater.  相似文献   
2.
Summary The proximal neurosecretory contact region (PCR) of Acipenseridae, a homologue of the tetrapod median eminence, has been studied by light, fluorescence and electron microscopy. It occupies the rostral and chiefly the ventral surfaces of the hypothalamic tuber cinereum. PAF-positive fibres occur in the zone of the preoptico-hypophysial tract but their terminal enlargements are concentrated mainly in the external zone. They make contact with the primary portal capillaries situated in the pia mater. Monoaminergic fibres and terminals with an intense green fluorescence are localized in the same regions. The fibres of some bipolar monoaminergic neurons of the PCR make contact both with the third ventricle and the primary portal capillaries.Three types of granule-containing neurosecretory fibres and terminals have been recognized in the PCR. Fibres of types A1 (d=120–300 nm) and A2 (d=100–170 nm) are peptidergic PAF-positive, although some fibres, including some of type A1; belong possibly to PAF-negative type. Monoaminergic type B fibres have granules 80–100 nm in diameter. Neurosecretory terminals and vascular endfeet of tanycytes make contact with the 70 nm thick outer basement membrane of the primary portal capillaries. Several laminae of thin horizontally oriented tanycyte processes form a boundary between the external zone and the preoptico-hypophysial tract. Few neuroglial cells with pale cytoplasm, numerous lysosomes and lipofuscin granules are seen in this region. It is hypothesized that, as in other vertebrates, both peptide hypophysiotropic neurohormones and monoamines are discharged from the PCR into the portal circulation and affect the activity of the glandular cells of the pars distalis.Dedicated to Prof. Dr. Drs. h.c. W. Bargmann on the occasion of his 70th birthday  相似文献   
3.
Atlantic sturgeon Acipenser oxyrinchus aggregate to feed from May to October in Minas Basin (45° N; 64° W), a large, cul‐de‐sac embayment of the inner Bay of Fundy. The aggregation consists mainly of migrants from the Saint John, NB and Kennebec Rivers, ME (99%). During 2004–2015, 4393 A. oxyrinchus were taken as by‐catch by commercial fish trawlers or at intertidal fishing weirs, and 1453 were marked and/or sampled and released. Fork length (LF) ranged from 458 to 2670 mm, but 72·5% were <1500 mm. Mass (M) ranged from 0·5 to 58·0 kg. The mass‐length relationship for fish ≤50 kg was log10M = 3·32log10LF ? 5·71. Observed growth of unsexed A. oxyrinchus recaptured after 1–8 years indicated fish of 90–179 cm LF grew c. 2–4 cm a year. Ages obtained from pectoral spines were from 4 to 54 years. The Von Bertalanffy growth model predicted K = 0·01 and L = 5209 mm LF. Estimated annual mortality was 9·5–10·9%. Aggregation sizes in 2008 and 2013 were 8804 and 9244 individuals, respectively. Fish exhibited high fidelity for yearly return to Minas Basin and population estimates indicated the total at‐sea number utilizing the Basin increased from c. 10 700 in 2010 to c. 37 500 in 2015. Abundance in the Basin was greatest along the north shore in spring and along the south shore in summer, suggesting clockwise movement following the residual current structure. Marked individuals were recaptured in other bays of the inner Bay of Fundy, north to Gaspé, Quebec, and south to New Jersey, U.S.A., with 26 recoveries from the Saint John River, NB, spawning run. Fish marked at other Canadian and U.S. sites were also recovered in Minas Basin. Since all A. oxyrinchus migrate into and out of the Basin annually they will be at risk of mortality if planned tidal power turbines are installed in Minas Passage.  相似文献   
4.
The Chinese sturgeon, Acipenser sinensis, is an anadromous protected species that presently only spawns in the Yangtze River. Using laboratory experiments, we examined the behavioral preference of young Chinese sturgeon to physical habitat (water depth, illumination intensity, substrate color, and cover) and monitored their downstream migration. Hatchling free embryos were photopositive, preferred open habitat, and immediately upon hatching, swam far above the bottom using swim-up and drift. Downstream migration peaked on days 0–1, decreased about 50% or more during days 2–7, and ceased by day 8. Days 0–1 migrants were active both day and night, but days 2–7 migrants were most active during the day. After ceasing migration, days 8–11 embryos were photonegative, preferred dark substrate and sought cover. Free embryos developed into larvae and began feeding on day 12, when another shift in behavior occurred–larvae returned to photopositive behavior and preferred white substrate. The selective factor favoring migration of free embryos upon hatching and swimming far above the bottom may be avoidance of benthic predatory fishes. Free embryos, which must rely on yolk energy for activity and growth, only used 19 cumulative temperature degree-days for peak migration compared to 234 degree-days for growth to first feeding larvae, a 1:12 ratio of cumulative temperature units. This ratio suggests that sturgeon species with large migratory embryos, like Chinese sturgeon, which require a high level of energy to swim during migration, may migrate only a short time to conserve most yolk energy for growth.  相似文献   
5.
Acipenseriformes (sturgeon and paddlefish) are basal actinopterygians with a highly derived cranial morphology that is characterized by an anatomical independence of the jaws from the neurocranium. We examined the morphological and kinematic basis of prey capture in the Acipenseriform fish Scaphirhynchus albus, the pallid sturgeon. Feeding pallid sturgeon were filmed in lateral and ventral views and movement of cranial elements was measured from video sequences. Sturgeon feed by creating an anterior to posterior wave of cranial expansion resulting in prey movement through the mouth. The kinematics of S. albus resemble those of other aquatic vertebrates: maximum hyoid depression follows maximum gape by an average of 15 ms and maximum opercular abduction follows maximum hyoid depression by an average of 57 ms. Neurocranial rotation was not a part of prey capture kinematics in S. albus, but was observed in another sturgeon species, Acipenser medirostris. Acipenseriformes have a novel jaw protrusion mechanism, which converts rostral rotation of the hyomandibula into ventral protrusion of the jaw joint. The relationship between jaw protrusion and jaw opening in sturgeon typically resembles that of elasmobranchs, with peak upper jaw protrusion occurring after peak gape.  相似文献   
6.
Regulation of river flow and the amount of winter rainfall are the major factors affecting the water temperature of the spawning grounds, for green sturgeon in the Klamath River. During the primary spawning period of green sturgeon, mid-April to June, the water temperature may vary from 8 to 21°C. To estimate the potential implications of this modified thermal regime, we examined the survival and development in three progeny groups of green sturgeon embryos from zygote to hatch, at constant incubation temperatures (11–26°C). Temperatures 23–26°C affected cleavage and gastrulation and all died before hatch. Temperatures 17.5–22°C were suboptimal as an increasing number of embryos developed abnormally and hatching success decreased at 20.5–22°C, although the tolerance to these temperatures varied between progenies. The lower temperature limit was not evident from this study, although hatching rate decreased at 11°C and hatched embryos were shorter, compared to 14°C. The mean total length of hatched embryos decreased with increasing temperature, although their wet and dry weight remained relatively constant. We concluded that temperatures 17–18°C may be the upper limit of the thermal optima for green sturgeon embryos, and that the river thermal regime during dry years may affect green sturgeon reproduction.  相似文献   
7.
Spermatozoa of sturgeons (Acipenseriformes), unlike teleosts, possess an acrosome. This paper provides data concerning biochemical characteristics of arylsulfatase (AS), an acrosomal enzyme, found in Russian sturgeon spermatozoa and seminal plasma. The enzymes were purified by a four-step procedure, using n-butanol extraction, ion-exchange chromatography repeated twice and gel filtration. High purity of our enzymes was confirmed by silver staining electrophoresis and an immunological experiment. Kinetic parameters indicated that the purified enzymes belong to arylsulfatase type A. Similarity of the seminal plasma arylsulfatase to the spermatozoan enzyme showed us that arylsulfatase from seminal plasma might originate from damaged spermatozoa. The possible physiological consequences of the presence of arylsulfatase in Russian sturgeon semen are discussed.  相似文献   
8.
9.
We monitored habitat use and movement of 27 adult shovelnose sturgeon in Pool 13 of the upper Mississippi River, Iowa-Illinois, by radio-telemetry in April through August 1988. Our objective was to determine the response of this species to unusually low water conditions in the upper Mississippi River in 1988. Most (94%) telemetry contacts were made in 3 habitat types: main channel (50%), main channel border where wing dams were present (29%), and tailwaters of Lock and Dam 12 (15%). Habitat use in spring was affected by the extreme low flows. We often found tagged shovelnose sturgeon in the main channel and tailwaters during the spring period (11 March–20 May) where water velocities were highest. This was in contrast to other studies where shovelnose sturgeon did not occupy those areas during years with normal spring flows. Shovelnose sturgeon were typically found in areas with a sand bottom, mean water depth of 5.8 m, and mean bottom current velocity of 0.23 m sec-1. They occupied areas of swifter current but were not always found in the fastest current in their immediate vicinity. Tagged shovelnose sturgeon tended to remain in the upper, more riverine portion of the pool, and we observed no emigration from the study pool. Linear total range of movement from the tagging site ranged from 1.9 to 54.6 km during the study period.  相似文献   
10.
Substrate preferences of juvenile, hatchery-reared lake sturgeon, Acipenser fulvescens, from a Wisconsin population were examined relative to water temperature and velocity, fish size and time of day. Given the choice of a sand, gravel, rock or smooth plastic bottom, all sturgeon were strongly attracted to the sand substrate. Water temperature did not affect substrate preference, however small sturgeon (13.5cm mean FL) acclimated to 19°C were more active than those tested in 6°C water. Small sturgeon, under all conditions, were less sedentary in the early morning and late evening hours than during the daytime. Preference of small sturgeon for sand was slightly stronger when a current of 5cmsec-1 was present. Substrate preference of larger sturgeon (24.3cm mean FL) was not affected by any of the parameters examined. In general, hatchery-reared lake sturgeon showed similar behaviors (with respect to substrate selection) as those previously described for the same population in the wild, making it possible that substrate preferences have a genetic component and likely that hatchery rearing does not alter instinctive behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号