首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22375篇
  免费   1416篇
  国内免费   684篇
  2023年   345篇
  2022年   356篇
  2021年   552篇
  2020年   637篇
  2019年   872篇
  2018年   891篇
  2017年   549篇
  2016年   538篇
  2015年   656篇
  2014年   1390篇
  2013年   1767篇
  2012年   1037篇
  2011年   1405篇
  2010年   995篇
  2009年   1076篇
  2008年   1095篇
  2007年   1123篇
  2006年   960篇
  2005年   850篇
  2004年   718篇
  2003年   634篇
  2002年   523篇
  2001年   334篇
  2000年   313篇
  1999年   299篇
  1998年   254篇
  1997年   215篇
  1996年   218篇
  1995年   203篇
  1994年   197篇
  1993年   197篇
  1992年   169篇
  1991年   157篇
  1990年   131篇
  1989年   114篇
  1988年   98篇
  1987年   92篇
  1986年   89篇
  1985年   189篇
  1984年   358篇
  1983年   295篇
  1982年   283篇
  1981年   215篇
  1980年   189篇
  1979年   163篇
  1978年   133篇
  1977年   134篇
  1976年   122篇
  1975年   101篇
  1973年   105篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
A series of color‐tunable Ca3–2x‐y‐zSiO4Cl2 (CSC):xCe3+,xLi+,yMn2+,zEu2+ phosphors with low temperature phase structure was synthesized via the sol–gel method. An energy transfer process from Ce3+ to Mn2+ in CSC:0.01Ce3+,0.01Li+,yMn2+ (y = 0.03–0.09) and the mechanism was verified to be an electric dipole–dipole interaction. The Ce3+ and Mn2+ emission intensities were greatly enhanced by co‐doping Eu2+ ions into CSC:0.01Ce3+,0.01Li+,0.07Mn2+ phosphors due to competitive energy transfers from Eu2+/Ce3+ to Mn2+, and Ce3+ to Eu2+. Under 332 nm excitation, CSC:0.01Ce3+,0.01Li+,0.07Mn2+,zEu2+ (z = 0.0005–0.002) exhibited tunable emission colors from green to white with coexisting orange, green and violet‐blue emissions. These phosphors could have potential application in white light‐emitting diodes.  相似文献   
2.
4-Phenylylboronic acid enhances the light emission from the horseradish peroxidase catalysed oxidation of luminol by hydrogen peroxide. Optimization studies showed that the greatest enhancement was obtained using micromolar concentrations of the new enhancer. The largest degree of enhancement was found with the basic isoenzyme of horseradish peroxidase (Type VIA), and lesser degrees of enhancement were obtained with Type VII and Type IX horseradish peroxidase. The enhancer was also effective in the peroxidase catalysed oxidation of isoluminol by peroxide.  相似文献   
3.
《Current biology : CB》2020,30(8):1477-1490.e3
  1. Download : Download high-res image (221KB)
  2. Download : Download full-size image
  相似文献   
4.
  1. Download : Download high-res image (261KB)
  2. Download : Download full-size image
  相似文献   
5.
N-phenyl ureidobenzenesulfonates (PUB-SOs) is a new class of promising anticancer agents inducing replication stresses and cell cycle arrest in S-phase. However, the pharmacological target of PUB-SOs was still unidentified. Consequently, the objective of the present study was to identify and confirm the pharmacological target of the prototypical PUB-SO named 2-ethylphenyl 4-(3-ethylureido)benzenesulfonate (SFOM-0046) leading to the cell cycle arrest in S-phase. The antiproliferative and the cytotoxic activities of SFOM-0046 were characterized using the NCI-60 screening program and its fingerprint was analyzed by COMPARE algorithm. Then, human dihydroorotate dehydrogenase (hDHODH) colorimetric assay, uridine rescuing cell proliferation and molecular docking in the brequinar-binding site were performed. As a result, SFOM-0046 exhibited a mean antiproliferative activity of 3.5 μM in the NCI-60 screening program and evidenced that leukemia and colon cancer cell panels were more sensitive to SFOM-0046. COMPARE algorithm showed that the SFOM-0046 cytotoxic profile is equivalent to the ones of brequinar and dichloroallyl lawsone, two inhibitors of hDHODH. SFOM-0046 inhibited the hDHODH in the low nanomolar range (IC50 = 72 nM) and uridine rescued the cell proliferation of HT-29, HT-1080, M21 and MCF-7 cancer cell lines in the presence of SFOM-0046. Finally, molecular docking showed a binding pose of SFOM-0046 interacting with Met43 and Phe62 present in the brequinar-binding site. In conclusion, PUB-SOs and notably SFOM-0046 are new small molecules hDHODH inhibitors triggering replication stresses and S-phase arrest.  相似文献   
6.
Two synthesis routes, solid‐state reaction and precipitation reaction, were employed to prepare BaSiO3:Eu2+ phosphors in this study. Discrepancies in the luminescence green emission at 505 nm for the solid‐state reaction method sample and in the yellow emission at 570 nm for the sample prepared by the precipitation reaction method, were observed respectively. A detail investigation about the discrepant luminescence of BaSiO3:Eu2+ phosphors was performed by evaluation of X‐ray diffraction (XRD), photoluminescence (PL)/photoluminescence excitation (PLE), decay time and thermal quenching properties. The results showed that the yellow emission was generated from the BaSiO3:Eu2+ phosphor, while the green emission was ascribed to a small amount of Ba2SiO4:Eu2+ compound that was present in the solid‐state reaction sample. This work clarifies the luminescence properties of Eu2+ ions in BaSiO3 and Ba2SiO4 hosts.  相似文献   
7.
Methoxychlor, a currently used pesticide, is demethylated and hydroxylated by several hepatic microsomal cytochrome P450 enzymes. Also, methoxychlor undergoes metabolic activation, yielding a reactive intermediate (M*) that binds irreversibly and apparently covalently to microsomal proteins. The study investigated whether methoxychlor could inhibit or inactivate certain liver microsomal P450 enzymes. The regioselective and stereoselective hydrox-ylation of testosterone and the 2-hydroxylation of estradiol (E2) were utilized as markers of the P450 enzymes inhibited by methoxychlor. Both reversible and time-dependent inhibition were examined. Coincubation of methoxychlor and testosterone with liver microsomes from phenobarbital treated (PB-microsomes) male rats, yielded marked diminution of 2α- and 16α-testosterone hydroxylation, indicating strong inhibition of P4502C11 (P450h). Methoxychlor moderately inhibited 2β-, 7α-, 15α-, 15β-, and 16β-hydroxylation and androstenedi-one formation. There was only a weak inhibition of 6β-ydroxylation of testosterone. The methox-ychlor-mediated inhibition of 6β-hydroxylation was competitive. By contrast, when methoxychlor was permitted to be metabolized by PB-microsomes or by liver microsomes from pregnenolone-16α-car-bonitrile treated rats (PCN-microsomes) prior to addition of testosterone, a pronounced time-dependent inhibition of 6β-hydroxylation was observed, suggesting that methoxychlor inactivates the P450 3A isozyme(s). The di-demethylated methoxychlor (bis-OH-M) and the tris-hydroxy (ca-techol) methoxychlor metabolite (tris-OH-M) inhibited 6β-hydroxylation in PB-microsomes competitively and noncompetitively, respectively; however, these methoxychlor metabolites did not exhibit a time-dependent inhibition. Methoxychlor inhibited competitively the formation of 7α-hydroxytestosterone (7α-OH-T) and 16α-hydroxy-testosterone (16α-OH-T) but exhibited little or no time-dependent inhibition of generation of these metabolites, indicating that P450s 2A1, 2B1/B2, and 2C11 were inhibited but not inactivated. Methoxychlor inhibited in a time-dependent fashion the 2-hydroxylation of E2 in PB-microsomes. However, bis-OH-M exhibited solely reversible inhibition of the 2-hydroxylation, supporting our conclusion that the inactivation of P450s does not involve participation of the demethylated metabolites. Both competitive inhibition and time-dependent inactivation of human liver P450 3A (6β-hydroxylase) by methoxychlor, was observed. As with rat liver microsomes, the human 6β-hydroxylase was inhibited by bis-OH-M and tris-OH-M competitively and noncompetitively, respectively. Testosterone and estradiol strongly inhibited the irreversible binding of methoxychlor to microsomal proteins. This might explain the “clean” competitive inhibition by methoxychlor of the 6β-OH-T formation when the compounds were coin-cubated. Glutathione (GSH) has been shown to interfere with the irreversible binding of methoxychlor to PB-microsomal proteins. The finding that the coincubation of GSH with methoxychlor partially diminishes the time-dependent inhibition of 6β-hydroxylation provides supportive evidence that the inactivation of P450 3A isozymes by methoxychlor is related to the formation of M*.  相似文献   
8.
The hypothesis that resource monopolization and defense increaseas the spatial clumping of resources increases was tested usinggroups of three convict cichlids competing for 120 Daphnia magnaprey. Spatial clumping was manipulated by varying the distance(3, 20, or 40 cm) between three tubes through which the preyappeared. As predicted, monopolization of prey (percentage eatenby the dominant fish) and frequency of aggression (chases perminute) by dominant fish increased significantly as the distancebetween the tubes decreased. However, there was no evidenceof individual flexibility in the aggressiveness (percentageof conspecifics chased) of dominant fish across treatments.Differences among dominant fish in aggressiveness were positivelycorrelated with their ability to monopolize prey, but the strengthof the correlation decreased as the distance between the tubesincreased. Aggression appears to be a more effective mechanismof interference competition when resources are clumped thanwhen resources are dispersed.  相似文献   
9.
《Developmental cell》2023,58(15):1383-1398.e6
4580723002447-fx1.jpg" height="375" alt="">
  1. Download : Download high-res image (125KB)
  2. Download : Download full-size image
  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号