首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13018篇
  免费   359篇
  国内免费   859篇
  2023年   213篇
  2022年   218篇
  2021年   362篇
  2020年   431篇
  2019年   604篇
  2018年   485篇
  2017年   318篇
  2016年   325篇
  2015年   249篇
  2014年   820篇
  2013年   1365篇
  2012年   520篇
  2011年   799篇
  2010年   678篇
  2009年   714篇
  2008年   746篇
  2007年   733篇
  2006年   645篇
  2005年   564篇
  2004年   451篇
  2003年   366篇
  2002年   292篇
  2001年   161篇
  2000年   127篇
  1999年   78篇
  1998年   86篇
  1997年   80篇
  1996年   63篇
  1995年   51篇
  1994年   52篇
  1993年   41篇
  1992年   29篇
  1991年   34篇
  1990年   17篇
  1989年   17篇
  1987年   16篇
  1985年   116篇
  1984年   196篇
  1983年   140篇
  1982年   146篇
  1981年   123篇
  1980年   128篇
  1979年   99篇
  1978年   85篇
  1977年   92篇
  1976年   93篇
  1975年   84篇
  1974年   59篇
  1973年   69篇
  1972年   21篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
1.
From three Fouquieria sp. 12 iridoid glucosides were isolated and identified. Eight of these were structurally related to galioside (monotropein methylester), while four were hydroxy substitution products of deoxyloganin. In three cases the glucoside occurred together with the corresponding 10-O-acetate.  相似文献   
2.
Na+/H+ antiporters comprise a super-family (CPA) of membrane proteins that are found in all kingdoms of life and are essential in cellular homeostasis of pH, Na+ and volume. Their activity is strictly dependent on pH, a property that underpins their role in pH homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystal structure provided insight into the architecture of this molecular machine. However, the mechanism of the strict pH dependence of NhaA is missing. Here, as a follow up of a recent evolutionary analysis that identified a ‘CPA motif’, we rationally designed three E. coli NhaA mutants: D133S, I134T, and the double mutant D133S-I134T. Exploring growth phenotype, transport activity and Li+-binding of the mutants, we revealed that Asp133 does not participate directly in proton binding, nor does it directly dictate the pH-dependent transport of NhaA. Strikingly, the variant I134T lost some of the pH control, and the D133S-Il134T double mutant retained Li+ binding in a pH independent fashion. Concurrent to loss of pH control, these mutants bound Li+ more strongly than the WT. Both positions are in close vicinity to the ion-binding site of the antiporter, attributing the results to electrostatic interaction between these residues and Asp164 of the ion-binding site. This is consistent with pH sensing resulting from direct coupling between cation binding and deprotonation in Asp164, which applies also to other CPA antiporters that are involved in human diseases.  相似文献   
3.
Many proteins that can assemble into higher order structures termed amyloids can also concentrate into cytoplasmic inclusions via liquid–liquid phase separation. Here, we study the assembly of human Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1), an amyloidogenic protein of the Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP) protein superfamily, into cytosolic inclusions in Saccharomyces cerevisiae. Overexpression of GAPR-1-GFP results in the formation GAPR-1 oligomers and fluorescent inclusions in yeast cytosol. These cytosolic inclusions are dynamic and reversible organelles that gradually increase during time of overexpression and decrease after promoter shut-off. Inclusion formation is, however, a regulated process that is influenced by factors other than protein expression levels. We identified N-myristoylation of GAPR-1 as an important determinant at early stages of inclusion formation. In addition, mutations in the conserved metal-binding site (His54 and His103) enhanced inclusion formation, suggesting that these residues prevent uncontrolled protein sequestration. In agreement with this, we find that addition of Zn2+ metal ions enhances inclusion formation. Furthermore, Zn2+ reduces GAPR-1 protein degradation, which indicates stabilization of GAPR-1 in inclusions. We propose that the properties underlying both the amyloidogenic properties and the reversible sequestration of GAPR-1 into inclusions play a role in the biological function of GAPR-1 and other CAP family members.  相似文献   
4.
5.
Cyanobacteria are one of the principal sources of volatile organic compounds (VOCs) which cause offensive taste and odor (T&O) in drinking and recreational water, fish, shellfish and other seafood. Although non-toxic to humans, these T&O compounds severely undermine public trust in these commodities, resulting in substantial costs in treatment, and lost revenue to drinking water, aquaculture, food and beverage and tourist/hospitality industries. Mitigation and control have been hindered by the complexity of the communities and processes which produce and modify T&O events, making it difficult to source-track the major producer(s) and the factors governing VOC production and fate. Over the past decade, however, advances in bioinformatics, enzymology, and applied detection technologies have greatly enhanced our understanding of the pathways, the enzymes and the genetic coding for some of the most problematic VOCs produced by cyanobacteria. This has led to the development of tools for rapid and sensitive detection and monitoring for the VOC production at source, and provided the basis for further diagnostics of endogenous and exogenous controls. This review provides an overview of current knowledge of the major cyanobacterial VOCs, the producers, the biochemistry and the genetics and highlight the current applications and further research needs in this area.  相似文献   
6.
7.
《Cell reports》2020,30(4):1129-1140.e5
  1. Download : Download high-res image (253KB)
  2. Download : Download full-size image
  相似文献   
8.
Proinsulin C-peptide has previously been proposed to interact with a G-protein coupled receptor (GPCR), specifically the orphan receptor GPR146. To investigate the potential of C-peptide in treating complications of diabetes, such as kidney damage, it is necessary to understand its mode of action. We used CHO-K1 cells expressing human GPR146 to study human and murine C-peptide in dynamic mass redistribution and GPCR β-arrestin assays, as well as with fluorescence confocal microscopy. Neither assay revealed any significant intracellular response to C-peptide at concentrations of up to 33 µM. We observed no internalisation of C-peptide by fluorescence microscopy. Our results do not support GPR146 as the receptor for C-peptide, but suggest that further investigations of the mode of action of C-peptide should be undertaken.  相似文献   
9.
10.
A CII-responsive promoter within the Q gene of bacteriophage lambda   总被引:2,自引:0,他引:2  
F H Stephenson 《Gene》1985,35(3):313-320
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号