首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   20篇
  2024年   1篇
  2022年   1篇
  2021年   7篇
  2020年   5篇
  2019年   9篇
  2018年   10篇
  2017年   8篇
  2016年   2篇
  2015年   9篇
  2014年   8篇
  2013年   7篇
  2012年   3篇
  2011年   10篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   9篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  1999年   2篇
  1998年   4篇
  1993年   2篇
  1989年   1篇
  1986年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有132条查询结果,搜索用时 31 毫秒
1.
The effect of a dietary phosphorus regime in freshwater on vertebra bone mineralization was assessed in diploid and triploid Atlantic salmon, Salmo salar. Fish were fed either a low phosphorus (LP) diet containing 10.5 g kg−1 total phosphorus or a normal phosphorus (NP) diet containing 17.4 g kg−1 total phosphorus from ∼3 to ∼65 g (day 126) in body weight. Two further groups were fed the NP diet from ∼3 g in body weight, but were then switched to the LP diet after 38 (∼10 g in body weight) or 77 (∼30 g in body weight) days. Growth, vertebral ash content (% ash) and radiologically detectable vertebra pathologies were assessed. Triploids were initially smaller than diploids, and again on day 77, but there was no ploidy effect on days 38 or 126. Vertebral ash content increased with increasing body size and those fish fed the NP diet had higher vertebral ash content than those groups fed the LP diet during the intervening time period, but this diet effect became less apparent as fish grew, with all groups having relatively equal vertebral ash content at termination. In general, triploids had lower vertebral ash content than diploids on day 38 and this was most evident in the group fed the LP diet. On day 77, those triploids fed the LP diet during the intervening time period had lower vertebral ash content than diploids. At termination on day 126, the triploids had the same vertebral ash content as diploids, irrespective of diet. There was a ploidy × diet interaction on vertebral deformities, with triploids having higher prevalences of fish with ≥1 deformed vertebra in all dietary groups except continuous NP. In conclusion, between days 0 and 77 (3–30 g body size), triploids required more dietary phosphorus than diploids in order to maintain similar vertebral ash content. A possible link between phosphorus feeding history and phosphorus demand is also discussed.  相似文献   
2.
3.
目的用micro-CT方法,评估中等强度跑台运动对去卵巢大鼠腰椎微结构的影响。方法将30只3月龄雌性SD大鼠按体重分层后随机分为假手术、去卵巢静止和去卵巢运动三个组。运动组每周进行4次45min、速度18 m/min、坡度5°的跑台训练。正式运动处理14周时,取第2腰椎检测骨密度,取第4腰椎行micro-CT分析及三维结构重建;取第3腰椎椎体进行椎体压缩实验。结果去卵巢运动组第2腰椎骨密度、第3腰椎最大载荷、最大应力和弹性模量以及第4腰椎骨小梁体积和骨小梁数目显著高于去卵巢静止组,骨小梁分离度显著低于去卵巢静止组,而骨小梁厚度无显著变化。结论中等强度跑台运动能改善去卵巢大鼠腰椎的微结构。  相似文献   
4.
Snakes exhibit a diverse array of body shapes despite their characteristically simplified morphology. The most extreme shape changes along the precloacal axis are seen in fully aquatic sea snakes (Hydrophiinae): “microcephalic” sea snakes have tiny heads and dramatically reduced forebody girths that can be less than a third of the hindbody girth. This morphology has evolved repeatedly in sea snakes that specialize in hunting eels in burrows, but its developmental basis has not previously been examined. Here, we infer the developmental mechanisms underlying body shape changes in sea snakes by examining evolutionary patterns of changes in vertebral number and postnatal ontogenetic growth. Our results show that microcephalic species develop their characteristic shape via changes in both the embryonic and postnatal stages. Ontogenetic changes cause the hindbodies of microcephalic species to reach greater sizes relative to their forebodies in adulthood, suggesting heterochronic shifts that may be linked to homeotic effects (axial regionalization). However, microcephalic species also have greater numbers of vertebrae, especially in their forebodies, indicating that somitogenetic effects also contribute to evolutionary changes in body shape. Our findings highlight sea snakes as an excellent system for studying the development of segment number and regional identity in the snake precloacal axial skeleton.  相似文献   
5.
Craniofacial development involves cranial neural crest (CNC) and mesoderm-derived cells. TGF-beta signaling plays a critical role in instructing CNC cells to form the craniofacial skeleton. However, it is not known how TGF-beta signaling regulates the fate of mesoderm-derived cells during craniofacial development. In this study, we show that occipital somites contribute to the caudal region of mammalian skull development. Conditional inactivation of Tgfbr2 in mesoderm-derived cells results in defects of the supraoccipital bone with meningoencephalocele and discontinuity of the neural arch of the C1 vertebra. At the cellular level, loss of TGF-beta signaling causes decreased chondrocyte proliferation and premature differentiation of cartilage to bone. Expression of Msx2, a critical factor in the formation of the dorsoventral axis, is diminished in the Tgfbr2 mutant. Significantly, overexpression of Msx2 in Myf5-Cre;Tgfbr2flox/flox mice partially rescues supraoccipital bone development. These results suggest that the TGF-beta/Msx2 signaling cascade is critical for development of the caudal region of the skull.  相似文献   
6.
In this study, the axial skeletons of two Early Paleocene marsupials, Mayulestes ferox and Pucadelphys andinus, were analyzed functionally and compared to that of six South American and three Australian species of extant marsupials. In the case of the South American opossums, myological data of the epaxial musculature were collected and analyzed and osteological-myological associations were related to locomotor behavior. Various features of the vertebral column that relate to diet or to locomotor or postural patterns were pointed out. These features include: the craniocaudal development of the neural process of the axis; the position of the anticlinal vertebra; the morphology of the neural processes of the thoracolumbar vertebrae (orientation, length, and craniocaudal width); the length, orientation, and curvature of the transverse processes of the lumbar vertebrae; and the length and robustness of the caudal vertebrae. In both fossil forms the vertebral column is mobile and allows a great range of flexion and extension of the spine, more so than in most of the living didelphids. It is emphasized here that the analysis of the axial skeleton complements and improves the conclusions provided by the forelimb and hindlimb analyses. It is proposed that Mayulestes and Pucadelphys represent an ancestral morphotype suggesting that the generalized type of locomotion of Paleocene marsupials was partly terrestrial with some climbing ability.  相似文献   
7.
The relationship between form and function in the lumbar vertebral column has been well documented among platyrrhines and especially catarrhines, while functional studies of postcranial morphology among strepsirrhines have concentrated predominantly on the limbs. This morphometric study investigates biomechanically relevant attributes of the lumbar vertebral morphology of 20 species of extant strepsirrhines. With this extensive sample, our goal is to address the influence of positional behavior on lumbar vertebral form while also assessing the effects of body size and phylogenetic history. The results reveal distinctions in lumbar vertebral morphology among strepsirrhines in functional association with their habitual postures and primary locomotor behaviors. In general, strepsirrhines that emphasize pronograde posture and quadrupedal locomotion combined with leaping (from a pronograde position) have the relatively longest lumbar regions and lumbar vertebral bodies, features promoting sagittal spinal flexibility. Indrids and galagonids that rely primarily on vertical clinging and leaping with orthograde posture share a relatively short (i.e., stable and resistant to bending) lumbar region, although the length of individual lumbar vertebral bodies varies phylogenetically and possibly allometrically. The other two vertical clingers and leapers, Hapalemur and Lepilemur, more closely resemble the pronograde, quadrupedal taxa. The specialized, suspensory lorids have relatively short lumbar regions as well, but the lengths of their lumbar regions are influenced by body size, and Arctocebus has dramatically longer vertebral bodies than do the other lorids. Lumbar morphology among galagonids appears to reflect a strong phylogenetic signal superimposed on a functional one. In general, relative length of the spinous processes follows a positively allometric trend, although lorids (especially the larger-bodied forms) have relatively short spinous processes for their body size, in accordance with their positional repertoire. The results of the study broaden our understanding of postcranial adaptation in primates, while providing an extensive comparative database for interpreting vertebral morphology in fossil primates.  相似文献   
8.
目的:探讨单一椎体骨质疏松性压缩性骨折行单侧PKP 术后对相邻上下椎体高度的影响。方法:62 例行T12 椎体骨质疏松 性压缩性骨折单侧PKP 术后的患者,测量术前,术后2 天、6 个月、1 年T11 椎体及L1 椎体前缘、中央及后缘高度,计算椎体压缩 率,比较两椎体各时相点椎体前缘、中央及后缘椎体压缩率的变化。结果:术后2 天L1 和T11 的椎体前缘、中央及后缘压缩率比 较差异无统计学意义(P 均>0.05);术后6 个月、1 年后两椎体前缘、中央及后缘高度压缩率比较(P均<0.05)差异有统计学意义。 L1 和T11 术后2 天、6 个月、12 个月不同时相,三点压缩率越来越大,差异有统计学意义(P均<0.05)。结论:单侧PKP术后椎体相 应负荷的改变,对下位邻近椎体较上位椎体高度影响较大,可能与相邻下位椎体承受的重力高于上位相邻椎体有关。  相似文献   
9.
10.
In this article, the upper cervical spine remains recovered from the Sima de los Huesos (SH) middle Pleistocene site in the Sierra de Atapuerca (Burgos, Spain) are described and analyzed. To date, this site has yielded more than 5000 human fossils belonging to a minimum of 28 individuals of the species Homo heidelbergensis. At least eleven individuals are represented by the upper cervical (C1 and C2) specimens: six adults and five subadults, one of which could represent an adolescent individual. The most complete adult vertebrae (three atlases and three axes) are described, measured, and compared with other fossil hominins and modern humans. These six specimens are associated with one another and represent three individuals. In addition, one of these sets of cervical vertebrae is associated with Cranium 5 (Individual XXI) from the site. The metric analysis demonstrates that the Sima de los Huesos atlases and axes are metrically more similar to Neandertals than to our modern human comparative sample. The SH atlases share with Neandertals a sagittally elongated canal. The most remarkable feature of the SH (and Neandertal) axes is that they are craniocaudally low and mediolaterally wide compared to our modern male sample. Morphologically, the SH sample shares with Neandertals a higher frequency of caudally projected anterior atlas arch, which could reflect greater development of the longus colli muscle. In other features, such as the frequency of weakly developed tubercles for the attachment of the transverse ligament of the atlas, the Sima de los Huesos fossils show intermediate frequencies between our modern comparative samples and the Neandertals, which could represent the primitive condition. Our results are consistent with the previous phylogenetic interpretation of H. heidelbergensis as an exclusively European species, ancestral only to H. neanderthalensis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号